Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 139: 106731, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37480815

RESUMO

Over the past decades, many cell-penetrating peptides (CPP) have been studied for their capacity to cross cellular membranes, mostly in order to improve cellular uptake of therapeutic agents. Even though hydrophobic and anionic CPPs have been described, many of them are polycationic, due to the presence of several arginine (Arg) residues. Noteworthy, however, the presence of aromatic amino acids such as tryptophan (Trp) within CPPs seems to play an important role to reach high membranotropic activity. RW9 (RRWWRRWRR) is a designed CPP derived from the polyarginine R9 presenting both features. In general, when interacting with membranes, CPPs adopt an optimal conformation for membrane interactions - an amphipathic helical secondary structure in the case of RW9. Herein, we assumed that the incorporation of a locally constrained amino acid in the peptide sequence could improve the membranotropic activity of RW9, by facilitating its structuration upon contact with a membrane, while leaving a certain plasticity. Therefore, two cyclized Trp derivatives (Tcc and Aia) were synthesized to be incorporated in RW9 as surrogates of Trp residues. Thus, a series of peptides containing these building blocks has been synthesized by varying the type, position, and number of modifications. The membranotropic activity of the RW9 analogs was studied by spectrofluorescence titration of the peptides in presence of liposomes (DMPG), allowing to calculate partition coefficients (Kp). Our results indicate that the partitioning of the modified peptides depends on the type, the number and the position of the modification, with the best sequence being [Aia4]RW9. Interestingly, both NMR analysis and molecular dynamic (MD) simulations indicate that this analog presents an extended conformation similar to the native RW9, but with a much-reduced structural flexibility. Finally, cell internalization properties were also confirmed by confocal microscopy.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Membrana Celular/metabolismo , Sequência de Aminoácidos , Lipossomos/química , Simulação de Dinâmica Molecular
2.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902455

RESUMO

The early characterization of drug membrane permeability is an important step in pharmaceutical developments to limit possible late failures in preclinical studies. This is particularly crucial for therapeutic peptides whose size generally prevents them from passively entering cells. However, a sequence-structure-dynamics-permeability relationship for peptides still needs further insight to help efficient therapeutic peptide design. In this perspective, we conducted here a computational study for estimating the permeability coefficient of a benchmark peptide by considering and comparing two different physical models: on the one hand, the inhomogeneous solubility-diffusion model, which requires umbrella-sampling simulations, and on the other hand, a chemical kinetics model which necessitates multiple unconstrained simulations. Notably, we assessed the accuracy of the two approaches in relation to their computational cost.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Permeabilidade da Membrana Celular , Difusão , Peptídeos , Permeabilidade
3.
Biophys J ; 113(2): 302-312, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28648754

RESUMO

Inspired by the recent success of scientific-discovery games for predicting protein tertiary and RNA secondary structures, we have developed an open software for coarse-grained RNA folding simulations, guided by human intuition. To determine the extent to which interactive simulations can accurately predict 3D RNA structures of increasing complexity and lengths (four RNAs with 22-47 nucleotides), an interactive experiment was conducted with 141 participants who had very little knowledge of nucleic acids systems and computer simulations, and had received only a brief description of the important forces stabilizing RNA structures. Their structures and full trajectories have been analyzed statistically and compared to standard replica exchange molecular dynamics simulations. Our analyses show that participants gain easily chemical intelligence to fold simple and nontrivial topologies, with little computer time, and this result opens the door for the use of human-guided simulations to RNA folding. Our experiment shows that interactive simulations have better chances of success when the user widely explores the conformational space. Interestingly, providing on-the-fly feedback of the root mean square deviation with respect to the experimental structure did not improve the quality of the proposed models.


Assuntos
Simulação por Computador , Dobramento de RNA , RNA , Acesso à Informação , Retroalimentação Psicológica , Humanos , Internet , Modelos Genéticos , Modelos Moleculares , RNA/química , Software , Solventes/química
4.
J Chem Theory Comput ; 17(10): 6509-6521, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506136

RESUMO

RNA molecules can easily adopt alternative structures in response to different environmental conditions. As a result, a molecule's energy landscape is rough and can exhibit a multitude of deep basins. In the absence of a high-resolution structure, small-angle X-ray scattering data (SAXS) can narrow down the conformational space available to the molecule and be used in conjunction with physical modeling to obtain high-resolution putative structures to be further tested by experiments. Because of the low resolution of these data, it is natural to implement the integration of SAXS data into simulations using a coarse-grained representation of the molecule, allowing for much wider searches and faster evaluation of SAXS theoretical intensity curves than with atomistic models. We present here the theoretical framework and the implementation of a simulation approach based on our coarse-grained model HiRE-RNA combined with SAXS evaluations "on-the-fly" leading the simulation toward conformations agreeing with the scattering data, starting from partially folded structures as the ones that can easily be obtained from secondary structure prediction-based tools. We show on three benchmark systems how our approach can successfully achieve high-resolution structures with remarkable similarity with the native structure recovering not only the overall shape, as imposed by SAXS data, but also the details of initially missing base pairs.


Assuntos
Dobramento de RNA , RNA , Espalhamento a Baixo Ângulo , Raios X
5.
J Chem Theory Comput ; 12(12): 6077-6097, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27767303

RESUMO

G-quadruplexes are the most important noncanonical DNA architectures. Many quadruplex-forming sequences, including the human telomeric sequence d(GGGTTA)n, have been investigated due to their implications in cancer and other diseases, and because of their potential in DNA-based nanotechnology. Despite the availability of atomistic structural studies of folded G-quadruplexes, their folding pathways remain mysterious, and mutually contradictory models of folding coexist in the literature. Recent experiments convincingly demonstrated that G-quadruplex folding often takes days to reach thermodynamic equilibrium. Based on atomistic simulations of diverse classes of intermediates in G-quadruplex folding, we have suggested that the folding is an extremely multipathway process combining a kinetic partitioning mechanism with conformational diffusion. However, complete G-quadruplex folding is far beyond the time scale of atomistic simulations. Here we use high-resolution coarse-grained simulations to investigate potential unfolding intermediates, whose structural dynamics are then further explored with all-atom simulations. This multiscale approach indicates how various pathways are interconnected in a complex network. Spontaneous conversions between different folds are observed. We demonstrate the inability of simple order parameters, such as radius of gyration or the number of native H-bonds, to describe the folding landscape of the G-quadruplexes. Our study also provides information relevant to further development of the coarse-grained force field.


Assuntos
Quadruplex G , Simulação de Dinâmica Molecular , Telômero/química , Humanos , Sequências Repetidas Invertidas/genética , Cinética , Conformação de Ácido Nucleico , Temperatura , Termodinâmica
6.
Phys Rev Lett ; 101(18): 181601, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999814

RESUMO

The thermodynamics of 5D dilaton gravity duals to confining gauge theories is analyzed. We show that they exhibit a first order Hawking-Page type phase transition. In the explicit background of improved holographic QCD of [U. Gursoy and E. Kiritsis, J. High Energy Phys. 02 (2008) 03210.1088/1126-6708/2008/02/032] [U. Gursoy, E. Kiritsis, and F. Nitti, J. High Energy Phys. 02 (2008) 01910.1088/1126-6708/2008/02/019], we find T_{c}=235 MeV. The temperature dependence of various thermodynamic quantities such as the pressure, entropy, and speed of sound is calculated. The results are in agreement with the corresponding lattice data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA