RESUMO
This 24-mo randomized, double-blind, controlled trial aimed to examine whether supplementation with a natural marine-derived multi-mineral supplement rich in calcium (Ca) taken alone and in conjunction with short-chain fructo-oligosaccharide (scFOSs) has a beneficial effect on bone mineral density (BMD) and bone turnover markers (BTMs) in postmenopausal women. A total of 300 non-osteoporotic postmenopausal women were randomly assigned to daily supplements of 800 mg of Ca, 800 mg of Ca with 3.6 g of scFOS (CaFOS), or 9 g of maltodextrin. BMD was measured before and after intervention along with BTMs, which were also measured at 12 mo. Intention-to-treat ANCOVA identified that the change in BMD in the Ca and CaFOS groups did not differ from that in the maltodextrin group. Secondary analysis of changes to BTMs over time identified a greater decline in osteocalcin and C-telopeptide of type I collagen (CTX) in the Ca group compared with the maltodextrin group at 12 mo. A greater decline in CTX was observed at 12 mo and a greater decline in osteocalcin was observed at 24 mo in the CaFOS group compared with the maltodextrin group. In exploratory subanalyses of each treatment group against the maltodextrin group, women classified with osteopenia and taking CaFOS had a smaller decline in total-body (P = 0.03) and spinal (P = 0.03) BMD compared with the maltodextrin group, although this effect was restricted to those with higher total-body and mean spinal BMD at baseline, respectively. Although the change in BMD observed did not differ between the groups, the greater decline in BTMs in the Ca and CaFOS groups compared with the maltodextrin group suggests a more favorable bone health profile after supplementation with Ca and CaFOS. Supplementation with CaFOS slowed the rate of total-body and spinal bone loss in postmenopausal women with osteopenia-an effect that warrants additional investigation. This trial was registered at www.controlled-trials.com as ISRCTN63118444.
Assuntos
Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Cálcio da Dieta/administração & dosagem , Suplementos Nutricionais , Oligossacarídeos/administração & dosagem , Pós-Menopausa/efeitos dos fármacos , Idoso , Biomarcadores/sangue , Colágeno Tipo I/metabolismo , Método Duplo-Cego , Feminino , Humanos , Pessoa de Meia-Idade , Osteocalcina/metabolismo , Osteoporose Pós-Menopausa , Peptídeos/metabolismoRESUMO
Maternal thyroid hormones facilitate optimal foetal neurodevelopment; however, the exact role of the thyroid hormones on specific cognitive outcomes is unknown. The present study aimed to investigate associations between maternal thyroid function and neurodevelopmental outcomes in the Seychelles Child Development Study (SCDS) Nutrition 2 cohort (n 1328). Maternal free thyroid hormones (fT3, fT4 and fTSH) were assessed at 28 weeks' gestation with a range of child cognitive outcomes analysed at 20 months. Dietary iodine intake was analysed for a subset of women through a Food Frequency Questionnaire. Linear regression analysis was used to test associations between serum concentrations of maternal thyroid hormones and child neurodevelopment outcomes. Thyroid hormones were analysed as continuous data and categorised as quintiles. 95% of mothers had optimal thyroid function based on fTSH concentrations. Overall, the present study shows that maternal thyroid function is not associated with neurodevelopmental outcomes in this high fish-eating population. However, a positive association, using quintiles for fT3, was reported for the Mental Developmental Index, between Q3 v. Q4 (ß 0â 073; P 0â 043) and for Q3 v. Q5 (ß value 0â 086; P 0â 018). To conclude, mothers in our cohort, who largely have optimal thyroid function and iodine intakes, appear able to regulate thyroid function throughout pregnancy to meet neurodevelopmental needs. However, it is possible that minor imbalances of fT3, as indicated from our secondary analysis, may impact offspring neurodevelopment. Further investigation of the relationship between maternal thyroid function and infant neurodevelopment is warranted, particularly in populations with different dietary patterns and thereby iodine intakes.