Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2301689120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523564

RESUMO

The diversity of COVID-19 disease in otherwise healthy people, from seemingly asymptomatic infection to severe life-threatening disease, is not clearly understood. We passaged a naturally occurring near-ancestral SARS-CoV-2 variant, capable of infecting wild-type mice, and identified viral genomic mutations coinciding with the acquisition of severe disease in young adult mice and lethality in aged animals. Transcriptomic analysis of lung tissues from mice with severe disease elucidated a host antiviral response dominated mainly by interferon and IL-6 pathway activation in young mice, while in aged animals, a fatal outcome was dominated by TNF and TGF-ß signaling. Congruent with our pathway analysis, we showed that young TNF-deficient mice had mild disease compared to controls and aged TNF-deficient animals were more likely to survive infection. Emerging clinical correlates of disease are consistent with our preclinical studies, and our model may provide value in defining aberrant host responses that are causative of severe COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto Jovem , Humanos , Camundongos , Animais , Idoso , SARS-CoV-2/genética , COVID-19/genética , Virulência/genética , Mutação , Modelos Animais de Doenças
3.
PLoS Pathog ; 17(8): e1009800, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437657

RESUMO

Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNß production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNß-promoter activity, whereas all six genes induced a collapse in IFNß mRNA levels, corresponding with suppressed IFNß protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.


Assuntos
Interferon beta/metabolismo , SARS-CoV-2/imunologia , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Chlorocebus aethiops , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Humanos , Interferon beta/genética , Interferon beta/farmacologia , SARS-CoV-2/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Células Vero , Proteínas Virais/genética
4.
J Biol Chem ; 297(6): 101362, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756886

RESUMO

The Nsp9 replicase is a conserved coronaviral protein that acts as an essential accessory component of the multi-subunit viral replication/transcription complex. Nsp9 is the predominant substrate for the essential nucleotidylation activity of Nsp12. Compounds specifically interfering with this viral activity would facilitate its study. Using a native mass-spectrometry-based approach to screen a natural product library for Nsp9 binders, we identified an ent-kaurane natural product, oridonin, capable of binding to purified SARS-CoV-2 Nsp9 with micromolar affinities. By determining the crystal structure of the Nsp9-oridonin complex, we showed that oridonin binds through a conserved site near Nsp9's C-terminal GxxxG-helix. In enzymatic assays, oridonin's binding to Nsp9 reduces its potential to act as substrate for Nsp12's Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain. We also showed using in vitro cellular assays oridonin, while cytotoxic at higher doses has broad antiviral activity, reducing viral titer following infection with either SARS-CoV-2 or, to a lesser extent, MERS-CoV. Accordingly, these preliminary findings suggest that the oridonin molecular scaffold may have the potential to be developed into an antiviral compound to inhibit the function of Nsp9 during coronaviral replication.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Diterpenos do Tipo Caurano/farmacologia , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , COVID-19/metabolismo , COVID-19/virologia , Chlorocebus aethiops , Diterpenos do Tipo Caurano/química , Humanos , Simulação de Acoplamento Molecular , Proteínas de Ligação a RNA/química , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Células Vero , Proteínas não Estruturais Virais/química
5.
Biomacromolecules ; 23(9): 3960-3967, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35994316

RESUMO

Continued SARS-CoV-2 transmission among the human population has meant the evolution of the virus to produce variants of increased infectiousness and virulence, coined variants of concern (VOCs). The last wave of pandemic infections was driven predominantly by the delta VOC, but because of continued transmission and adaptive mutations, the more highly transmissible omicron variant emerged and is now dominant. However, due to waning immunity and emergence of new variants, vaccines alone cannot control the pandemic. The application of an antiviral coating to high-touch surfaces and physical barriers such as masks are an effective means to inactivate the virus and their spread. Here, we demonstrate an environmentally friendly water-borne polymer coating that can completely inactivate SARS-CoV-2 independent of the infectious variant. The polymer was designed to target the highly glycosylated spike protein on the virion surface and inactivate the virion by disruption of the viral membrane through a nano-mechanical process. Our findings show that, even with low amounts of coating on the surface (1 g/m2), inactivation of alpha, delta, and omicron VOCs and degradation of their viral genome were complete. Furthermore, our data shows that the polymer induces little to no skin sensitization in mice and is non-toxic upon oral ingestion in rats. We anticipate that our transparent polymer coating can be applied to face masks and many other surfaces to capture and inactivate the virus, aiding in the reduction of SARS-CoV-2 transmission and evolution of new variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Humanos , Camundongos , Polímeros , Ratos , SARS-CoV-2/genética , Vírion
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055020

RESUMO

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Assuntos
COVID-19/virologia , Mucosa Nasal/citologia , Mucosa Nasal/virologia , Técnicas de Cultura de Tecidos/métodos , Adolescente , Adulto , Enzima de Conversão de Angiotensina 2/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , SARS-CoV-2 , Internalização do Vírus
7.
Virol J ; 18(1): 53, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691737

RESUMO

INTRODUCTION: The sudden arrival of the COVID-19 pandemic placed significant stresses on supply chains including viral transport medium (VTM). The VTM that was urgently required needed to support viral replication, as well as other routine diagnostic approaches. We describe the preparation and validation testing of VTM for rapidly expanding diagnostic testing, where the capacity of the VTM to preserve viral integrity, for culture, isolation and full sequence analysis, was maintained. METHODS: VTM was prepared using different methods of sterilization then 'spiked' with virus. The VTM was investigated using viral culture in Vero cells, and for nucleic acid detection by quantitative PCR. RESULTS: The best results were obtained by filter and autoclave-based sterilization. The VTM proved robust for culture-based analyses provided the inoculated VTM was stored at 4 °C, and tested within 48 h. The filtered VTM also supported PCR-based diagnosis for at least 5 days when the mock inoculated VTM was held at room temperature. DISCUSSION: The manual handling of VTM production, including filling and sterilization, was optimized. SARS-CoV-2 was spiked into VTM to assess different sterilization methods and measure the effects of storage time and temperature upon VTM performance. While most diagnostic protocols will not require replication competent virus, the use of high quality VTM will allow for the next phase of laboratory analysis in the COVID-19 pandemic, including drug and antibody susceptibility analysis of re-isolated SARS-CoV-2, and for the testing of vaccine escape mutants.


Assuntos
COVID-19/diagnóstico , SARS-CoV-2/crescimento & desenvolvimento , Manejo de Espécimes/métodos , Animais , Antibacterianos/farmacologia , Teste para COVID-19/métodos , Linhagem Celular , Chlorocebus aethiops , Meios de Cultura/química , Humanos , RNA Viral/análise , Células Vero
8.
Angew Chem Int Ed Engl ; 60(31): 17102-17107, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34043272

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID-19. We propose a portable infrared spectrometer with purpose-built transflection accessory for rapid point-of-care detection of COVID-19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM-IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS-CoV-2 by RT-qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT-qPCR. Herein, we demonstrate a proof-of-concept high throughput infrared COVID-19 test that is rapid, inexpensive, portable and utilizes sample self-collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Saliva/química , Animais , Chlorocebus aethiops , Estudos de Coortes , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Método de Monte Carlo , Testes Imediatos , Estudo de Prova de Conceito , SARS-CoV-2 , Sensibilidade e Especificidade , Manejo de Espécimes , Espectrofotometria Infravermelho , Células Vero
10.
J Biol Chem ; 292(3): 826-836, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27913620

RESUMO

The emergence of avian H7N9 influenza A virus in humans with associated high mortality has highlighted the threat of a potential pandemic. Fatal H7N9 infections are characterized by hyperinflammation and increased cellular infiltrates in the lung. Currently there are limited therapies to address the pathologies associated with H7N9 infection and the virulence factors that contribute to these pathologies. We have found that PB1-F2 derived from H7N9 activates the NLRP3 inflammasome and induces lung inflammation and cellular recruitment that is NLRP3-dependent. We have also shown that H7N9 and A/Puerto Rico/H1N1 (PR8)PB1-F2 peptide treatment induces significant mitochondrial reactive oxygen production, which contributes to NLRP3 activation. Importantly, treatment of cells or mice with the specific NLRP3 inhibitor MCC950 significantly reduces IL-1ß maturation, lung cellular recruitment, and cytokine production. Together, these results suggest that PB1-F2 from H7N9 avian influenza A virus may be a major contributory factor to disease pathophysiology and excessive inflammation characteristic of clinical infections and that targeting the NLRP3 inflammasome may be an effective means to reduce the inflammatory burden associated with H7N9 infections.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Orthomyxoviridae/imunologia , Peptídeos/imunologia , Proteínas Virais/imunologia , Animais , Linhagem Celular Transformada , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos , Inflamação/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Sulfonamidas , Sulfonas/farmacologia
11.
Virol J ; 14(1): 162, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830486

RESUMO

Influenza A virus (IAV) PB1-F2 protein has been linked to viral virulence. Strains of the H3N2 subtype historically express full-length PB1-F2 proteins but during the 2010-2011 influenza seasons, nearly half of the circulating H3N2 IAVs encoded truncated PB1-F2 protein. Using a panel of reverse engineered H3N2 IAVs differing only in the origin of the PB1 gene segment, we found that only the virus encoding the avian-derived 1968 PB1 gene matching the human pandemic strain enhanced cellular infiltrate into the alveolar spaces of infected mice. We linked this phenomenon to expression of full-length PB1-F2 protein encompassing critical "inflammatory" residues.


Assuntos
Regulação Viral da Expressão Gênica/genética , Vírus da Influenza A Subtipo H3N2/genética , Proteínas Virais/genética , Virulência/genética , Animais , Sequência de Bases , Aves , Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Pandemias , Estações do Ano , Análise de Sequência , Carga Viral , Proteínas Virais/isolamento & purificação
12.
Immunol Cell Biol ; 94(5): 439-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26667784

RESUMO

Expression of the viral virulence protein PB1-F2 during infection has been linked to NLRP3 inflammasome complex activation in macrophages and induction of early inflammatory events enhancing immunopathology during influenza disease. We sought to determine whether PB1-F2-specific NLRP3 inflammasome activation influenced the magnitude and/or robustness of the CD8(+) T-cell responses specific for conserved viral antigens and subsequent virus elimination. Using murine heterosubtypic viral infection models, we showed that mice infected with virus unable to produce PB1-F2 protein showed no deficit in the overall magnitude and functional memory responses of CD8(+) T cells established during the effector phase compared with those infected with wild-type PB1-F2-expressing virus and were equally capable of mounting robust recall responses. These data indicate that while expression of PB1-F2 protein can induce inflammatory events, the capacity to generate memory CD8(+) T cells specific for immunodominant viral epitopes remains uncompromised.


Assuntos
Memória Imunológica , Inflamassomos/metabolismo , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Inflamação/patologia , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Especificidade da Espécie
13.
PLoS Pathog ; 9(3): e1003238, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555251

RESUMO

Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. To address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.


Assuntos
Coinfecção , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/complicações , Streptococcus pneumoniae/imunologia , Animais , Coinfecção/microbiologia , Coinfecção/fisiopatologia , Coinfecção/virologia , Feminino , Vírus da Influenza A Subtipo H1N1/patogenicidade , Cinética , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Teóricos , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/patogenicidade , Fatores de Tempo
14.
PLoS Pathog ; 9(5): e1003392, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737748

RESUMO

The ability for a host to recognize infection is critical for virus clearance and often begins with induction of inflammation. The PB1-F2 of pathogenic influenza A viruses (IAV) contributes to the pathophysiology of infection, although the mechanism for this is unclear. The NLRP3-inflammasome has been implicated in IAV pathogenesis, but whether IAV virulence proteins can be activators of the complex is unknown. We investigated whether PB1-F2-mediated activation of the NLRP3-inflammasome is a mechanism contributing to overt inflammatory responses to IAV infection. We show PB1-F2 induces secretion of pyrogenic cytokine IL-1ß by activating the NLRP3-inflammasome, contributing to inflammation triggered by pathogenic IAV. Compared to infection with wild-type virus, mice infected with reverse engineered PB1-F2-deficient IAV resulted in decreased IL-1ß secretion and cellular recruitment to the airways. Moreover, mice exposed to PB1-F2 peptide derived from pathogenic IAV had enhanced IL-1ß secretion compared to mice exposed to peptide derived from seasonal IAV. Implicating the NLRP3-inflammasome complex specifically, we show PB1-F2 derived from pathogenic IAV induced IL-1ß secretion was Caspase-1-dependent in human PBMCs and NLRP3-dependent in mice. Importantly, we demonstrate PB1-F2 is incorporated into the phagolysosomal compartment, and upon acidification, induces ASC speck formation. We also show that high molecular weight aggregated PB1-F2, rather than soluble PB1-F2, induces IL-1ß secretion. Furthermore, NLRP3-deficient mice exposed to PB1-F2 peptide or infected with PB1-F2 expressing IAV were unable to efficiently induce the robust inflammatory response as observed in wild-type mice. In addition to viral pore forming toxins, ion channel proteins and RNA, we demonstrate inducers of NLRP3-inflammasome activation may include disordered viral proteins, as exemplified by PB1-F2, acting as host pathogen 'danger' signals. Elucidating immunostimulatory PB1-F2 mediation of NLRP3-inflammasome activation is a major step forward in our understanding of the aetiology of disease attributable to exuberant inflammatory responses to IAV infection.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Proteínas Virais/imunologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular Transformada , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Inflamação/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/fisiopatologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/imunologia
15.
iScience ; 27(6): 110009, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38868206

RESUMO

Continuous assessment of the impact of SARS-CoV-2 on the host at the cell-type level is crucial for understanding key mechanisms involved in host defense responses to viral infection. We investigated host response to ancestral-strain and Alpha-variant SARS-CoV-2 infections within air-liquid-interface human nasal epithelial cells from younger adults (26-32 Y) and older children (12-14 Y) using single-cell RNA-sequencing. Ciliated and secretory-ciliated cells formed the majority of highly infected cell-types, with the latter derived from ciliated lineages. Strong innate immune responses were observed across lowly infected and uninfected bystander cells and heightened in Alpha-infection. Alpha highly infected cells showed increased expression of protein-refolding genes compared with ancestral-strain-infected cells in children. Furthermore, oxidative phosphorylation-related genes were down-regulated in bystander cells versus infected and mock-control cells, underscoring the importance of these biological functions for viral replication. Overall, this study highlights the complexity of cell-type-, age- and viral strain-dependent host epithelial responses to SARS-CoV-2.

16.
EBioMedicine ; 92: 104574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148585

RESUMO

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Assuntos
COVID-19 , Proteínas de Transporte , Cricetinae , Humanos , Camundongos , Ratos , Animais , Vacinas contra COVID-19 , SARS-CoV-2 , Subunidades Proteicas , COVID-19/prevenção & controle , Austrália , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais
17.
J Virol ; 85(23): 12324-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937639

RESUMO

The influenza A virus protein PB1-F2 has been linked to the pathogenesis of both primary viral and secondary bacterial infections. H3N2 viruses have historically expressed full-length PB1-F2 proteins with either proinflammatory (e.g., from influenza A/Hong Kong/1/1968 virus) or noninflammatory (e.g., from influenza A/Wuhan/359/1995 virus) properties. Using synthetic peptides derived from the active C-terminal portion of the PB1-F2 protein from those two viruses, we mapped the proinflammatory domain to amino acid residues L62, R75, R79, and L82 and then determined the role of that domain in H3N2 influenza virus pathogenicity. PB1-F2-derived peptides containing that proinflammatory motif caused significant morbidity, mortality, and pulmonary inflammation in mice, manifesting as increased acute lung injury and the presence of proinflammatory cytokines and inflammatory cells in the lungs compared to peptides lacking this motif, and better supported bacterial infection with Streptococcus pneumoniae. Infections of mice with an otherwise isogenic virus engineered to contain this proinflammatory sequence in PB1-F2 demonstrated increased morbidity resulting from primary viral infections and enhanced development of secondary bacterial pneumonia. The presence of the PB1-F2 noninflammatory (P62, H75, Q79, and S82) sequence in the wild-type virus mediated an antibacterial effect. These data suggest that loss of the inflammatory PB1-F2 phenotype that supports bacterial superinfection during adaptation of H3N2 viruses to humans, coupled with acquisition of antibacterial activity, contributes to the relatively diminished frequency of severe infections seen with seasonal H3N2 influenza viruses in recent decades compared to their first 2 decades of circulation.


Assuntos
Vírus da Influenza A Subtipo H3N2/patogenicidade , Infecções por Orthomyxoviridae/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Infecções Pneumocócicas/prevenção & controle , Pneumonia/prevenção & controle , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Rim/citologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Infecções por Orthomyxoviridae/etiologia , Infecções por Orthomyxoviridae/patologia , Fragmentos de Peptídeos/imunologia , Infecções Pneumocócicas/etiologia , Infecções Pneumocócicas/patologia , Pneumonia/etiologia , Pneumonia/patologia , Homologia de Sequência de Aminoácidos , Streptococcus pneumoniae/patogenicidade , Replicação Viral
18.
PLoS Pathog ; 6(7): e1001014, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20661425

RESUMO

With the recent emergence of a novel pandemic strain, there is presently intense interest in understanding the molecular signatures of virulence of influenza viruses. PB1-F2 proteins from epidemiologically important influenza A virus strains were studied to determine their function and contribution to virulence. Using 27-mer peptides derived from the C-terminal sequence of PB1-F2 and chimeric viruses engineered on a common background, we demonstrated that induction of cell death through PB1-F2 is dependent upon BAK/BAX mediated cytochrome c release from mitochondria. This function was specific for the PB1-F2 protein of A/Puerto Rico/8/34 and was not seen using PB1-F2 peptides derived from past pandemic strains. However, PB1-F2 proteins from the three pandemic strains of the 20(th) century and a highly pathogenic strain of the H5N1 subtype were shown to enhance the lung inflammatory response resulting in increased pathology. Recently circulating seasonal influenza A strains were not capable of this pro-inflammatory function, having lost the PB1-F2 protein's immunostimulatory activity through truncation or mutation during adaptation in humans. These data suggest that the PB1-F2 protein contributes to the virulence of pandemic strains when the PB1 gene segment is recently derived from the avian reservoir.


Assuntos
Sistema Imunitário/virologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Proteínas Virais/fisiologia , Animais , Aves , Surtos de Doenças/história , História do Século XX , Humanos , Sistema Imunitário/patologia , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Orthomyxoviridae
19.
PLoS Comput Biol ; 7(2): e1001081, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379324

RESUMO

Relatively little is known about the viral factors contributing to the lethality of the 1918 pandemic, although its unparalleled virulence was likely due in part to the newly discovered PB1-F2 protein. This protein, while unnecessary for replication, increases apoptosis in monocytes, alters viral polymerase activity in vitro, enhances inflammation and increases secondary pneumonia in vivo. However, the effects the PB1-F2 protein have in vivo remain unclear. To address the mechanisms involved, we intranasally infected groups of mice with either influenza A virus PR8 or a genetically engineered virus that expresses the 1918 PB1-F2 protein on a PR8 background, PR8-PB1-F2(1918). Mice inoculated with PR8 had viral concentrations peaking at 72 hours, while those infected with PR8-PB1-F2(1918) reached peak concentrations earlier, 48 hours. Mice given PR8-PB1-F2(1918) also showed a faster decline in viral loads. We fit a mathematical model to these data to estimate parameter values. The model supports a higher viral production rate per cell and a higher infected cell death rate with the PR8-PB1-F2(1918) virus. We discuss the implications these mechanisms have during an infection with a virus expressing a virulent PB1-F2 on the possibility of a pandemic and on the importance of antiviral treatments.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Modelos Biológicos , Infecções por Orthomyxoviridae/virologia , Proteínas Virais/biossíntese , Replicação Viral/genética , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/patogenicidade , Cinética , Modelos Lineares , Pulmão/virologia , Camundongos , Pandemias , Carga Viral , Proteínas Virais/genética , Replicação Viral/fisiologia
20.
J Infect Dis ; 203(6): 880-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21278211

RESUMO

Superinfections from Staphylococcus aureus following influenza are an increasing concern. We assessed several laboratory and clinical strains in a mouse coinfection model with influenza virus. A methicillin-resistant USA300 clone and several recent clinical strains from patients with necrotizing pneumonia caused high mortality following influenza virus infection in mice. Both viral and bacterial lung titers were enhanced during coinfections compared with single infections. However, differences in titers did not correspond with differences in disease outcomes in a comparison of superinfections from a highly pathogenic strain with those from a poorly pathogenic strain. These strains did differ, however, in expression of Panton-Valentine leukocidin and in the degree of inflammatory lung damage each engendered. The viral cytotoxin PB1-F2 contributed to the negative outcomes. These data suggest that additional study of specific bacterial virulence factors involved in the pathogenesis of inflammation and lung damage during coinfections is needed.


Assuntos
Vírus da Influenza A/patogenicidade , Influenza Humana/complicações , Pneumonia Estafilocócica/microbiologia , Staphylococcus aureus/patogenicidade , Superinfecção/microbiologia , Animais , Citotoxinas , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A/imunologia , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Staphylococcus aureus Resistente à Meticilina , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Estafilocócica/complicações , Reação em Cadeia da Polimerase , Baço/patologia , Baço/virologia , Superinfecção/complicações , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA