Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1991): 20222021, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695036

RESUMO

A large fraction of marine primary production is performed by diverse small protists, and many of these phytoplankton are phagotrophic mixotrophs that vary widely in their capacity to consume bacterial prey. Prior analyses suggest that mixotrophic protists as a group vary in importance across ocean environments, but the mechanisms leading to broad functional diversity among mixotrophs, and the biogeochemical consequences of this, are less clear. Here we use isolates from seven major taxa to demonstrate a tradeoff between phototrophic performance (growth in the absence of prey) and phagotrophic performance (clearance rate when consuming Prochlorococcus). We then show that trophic strategy along the autotrophy-mixotrophy spectrum correlates strongly with global niche differences, across depths and across gradients of stratification and chlorophyll a. A model of competition shows that community shifts can be explained by greater fitness of faster-grazing mixotrophs when nutrients are scarce and light is plentiful. Our results illustrate how basic physiological constraints and principles of resource competition can organize complexity in the surface ocean ecosystem.


Assuntos
Ecossistema , Eucariotos , Eucariotos/fisiologia , Fitoplâncton , Clorofila A , Oceanos e Mares
2.
Limnol Oceanogr ; 68(1): 84-96, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37064272

RESUMO

Nitrifying microorganisms, including ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and nitrite-oxidizing bacteria, are the most abundant chemoautotrophs in the ocean and play an important role in the global carbon cycle by fixing dissolved inorganic carbon (DIC) into biomass. The release of organic compounds by these microbes is not well quantified, but may represent an as-yet unaccounted source of dissolved organic carbon (DOC) available to marine food webs. Here, we provide measurements of cellular carbon and nitrogen quotas, DIC fixation yields and DOC release of 10 phylogenetically diverse marine nitrifiers. All investigated strains released DOC during growth, representing on average 5-15% of the fixed DIC. Changes in substrate concentration and temperature did not affect the proportion of fixed DIC released as DOC, but release rates varied between closely related species. Our results also indicate previous studies may have underestimated DIC fixation yields of marine nitrite oxidizers due to partial decoupling of nitrite oxidation from CO2 fixation, and due to lower observed yields in artificial compared to natural seawater medium. The results of this study provide critical values for biogeochemical models of the global carbon cycle, and help to further constrain the implications of nitrification-fueled chemoautotrophy for marine food-web functioning and the biological sequestration of carbon in the ocean.

3.
Npj Viruses ; 2(1): 51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39464202

RESUMO

Viruses in the phylum Nucleocytoviricota are large, complex and have an exceptionally diverse metabolic repertoire. Some encode hundreds of products involved in the translation of mRNA into protein, but none was known to encode any of the proteins in ribosomes, the central engines of translation. With the discovery of the eL40 gene in FloV-SA2, we report the first example of a eukaryotic virus encoding a ribosomal protein and show that this gene is also present and expressed in other uncultivated marine giant viruses. FloV-SA2 also encodes a "group II" viral rhodopsin, a viral light-activated protein of unknown function previously only reported in metagenomes. FloV-SA2 is thus a valuable model system for investigating new mechanisms by which viruses manipulate eukaryotic cell metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA