Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(45): e2204993119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322765

RESUMO

Community-associated, methicillin-resistant Staphylococcus aureus (MRSA) lineages have emerged in many geographically distinct regions around the world during the past 30 y. Here, we apply consistent phylodynamic methods across multiple community-associated MRSA lineages to describe and contrast their patterns of emergence and dissemination. We generated whole-genome sequencing data for the Australian sequence type (ST) ST93-MRSA-IV from remote communities in Far North Queensland and Papua New Guinea, and the Bengal Bay ST772-MRSA-V clone from metropolitan communities in Pakistan. Increases in the effective reproduction number (Re) and sustained transmission (Re > 1) coincided with spread of progenitor methicillin-susceptible S. aureus (MSSA) in remote northern Australian populations, dissemination of the ST93-MRSA-IV genotype into population centers on the Australian East Coast, and subsequent importation into the highlands of Papua New Guinea and Far North Queensland. Applying the same phylodynamic methods to existing lineage datasets, we identified common signatures of epidemic growth in the emergence and epidemiological trajectory of community-associated S. aureus lineages from America, Asia, Australasia, and Europe. Surges in Re were observed at the divergence of antibiotic-resistant strains, coinciding with their establishment in regional population centers. Epidemic growth was also observed among drug-resistant MSSA clades in Africa and northern Australia. Our data suggest that the emergence of community-associated MRSA in the late 20th century was driven by a combination of antibiotic-resistant genotypes and host epidemiology, leading to abrupt changes in lineage-wide transmission dynamics and sustained transmission in regional population centers.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Infecções Estafilocócicas/epidemiologia , Austrália/epidemiologia , Antibacterianos/farmacologia , Paquistão , Infecções Comunitárias Adquiridas/epidemiologia , Testes de Sensibilidade Microbiana
2.
BMC Health Serv Res ; 24(1): 104, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238735

RESUMO

BACKGROUND: The vast region of northern Queensland (NQ) in Australia experiences poorer health outcomes and a disproportionate burden of communicable diseases compared with urban populations in Australia. This study examined the governance of COVID-19 surveillance and response in NQ to identify strengths and opportunities for improvement. METHODS: The manuscript presents an analysis of one case-unit within a broader case study project examining systems for surveillance and response for COVID-19 in NQ. Data were collected between October 2020-December 2021 comprising 47 interviews with clinical and public health staff, document review, and observation in organisational settings. Thematic analysis produced five key themes. RESULTS: Study findings highlight key strengths of the COVID-19 response, including rapid implementation of response measures, and the relative autonomy of NQ's Public Health Units to lead logistical decision-making. However, findings also highlight limitations and fragility of the public health system more generally, including unclear accountabilities, constraints on local community engagement, and workforce and other resourcing shortfalls. These were framed by state-wide regulatory and organisational incentives that prioritise clinical health care rather than disease prevention, health protection, and health promotion. Although NQ mobilised an effective COVID-19 response, findings suggest that NQ public health systems are marked by fragility, calling into question the region's preparedness for future pandemic events and other public health crises. CONCLUSIONS: Study findings highlight an urgent need to improve governance, resourcing, and political priority of public health in NQ to address unmet needs and ongoing threats.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Saúde Pública , Queensland/epidemiologia , Hospitais , Austrália
3.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171290

RESUMO

Nanopore sequencing and phylodynamic modeling have been used to reconstruct the transmission dynamics of viral epidemics, but their application to bacterial pathogens has remained challenging. Cost-effective bacterial genome sequencing and variant calling on nanopore platforms would greatly enhance surveillance and outbreak response in communities without access to sequencing infrastructure. Here, we adapt random forest models for single nucleotide polymorphism (SNP) polishing developed by Sanderson and colleagues (2020. High precision Neisseria gonorrhoeae variant and antimicrobial resistance calling from metagenomic nanopore sequencing. Genome Res. 30(9):1354-1363) to estimate divergence and effective reproduction numbers (Re) of two methicillin-resistant Staphylococcus aureus (MRSA) outbreaks from remote communities in Far North Queensland and Papua New Guinea (PNG; n = 159). Successive barcoded panels of S. aureus isolates (2 × 12 per MinION) sequenced at low coverage (>5× to 10×) provided sufficient data to accurately infer genotypes with high recall when compared with Illumina references. Random forest models achieved high resolution on ST93 outbreak sequence types (>90% accuracy and precision) and enabled phylodynamic inference of epidemiological parameters using birth-death skyline models. Our method reproduced phylogenetic topology, origin of the outbreaks, and indications of epidemic growth (Re > 1). Nextflow pipelines implement SNP polisher training, evaluation, and outbreak alignments, enabling reconstruction of within-lineage transmission dynamics for infection control of bacterial disease outbreaks on portable nanopore platforms. Our study shows that nanopore technology can be used for bacterial outbreak reconstruction at competitive costs, providing opportunities for infection control in hospitals and communities without access to sequencing infrastructure, such as in remote northern Australia and PNG.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sequenciamento por Nanoporos , Bactérias/genética , Surtos de Doenças , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Staphylococcus aureus Resistente à Meticilina/genética , Filogenia , Staphylococcus aureus/genética
4.
Rural Remote Health ; 23(1): 7165, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36977420

RESUMO

INTRODUCTION: Delays between self-reported symptom onset and commencement of effective treatment contribute to ongoing tuberculosis (TB) transmission, which is a particular concern in patients with drug-resistant (DR)-TB. The study authors assessed improvements in time to commencement of effective treatment in patients diagnosed with DR-TB in the Torres Strait-Papua New Guinea cross-border region. METHODS: All laboratory-confirmed DR-TB cases diagnosed in the Torres Strait between 1 March 2000 and 31 March 2020 were reviewed. Total time from self-reported onset of symptoms to effective treatment commencement in different programmatic time periods was assessed. Pairwise analyses and time to event proportional hazard calculations were used to explore the association between delays in median time to effective treatment, and selected variables. Data were further analysed to examine predictors of excessive treatment delay. RESULTS: The median number of days from self-reported onset of symptoms to effective treatment commencement was 124 days (interquartile range 51-214) over two decades. Between 2006 and 2012, most (57%) cases exceeded this 'grand median' while the median 'time to treat' in the most recent time period (2016-2020) was significantly reduced to 29 days (p<0.001). Although there was a reduction in the median 'time to treat' with the introduction of Xpert MTB/RIF (135 days pre-Xpert v 67 days post-Xpert) this was not statistically significant (p=0.07). Establishment of the Torres and Cape TB Control Unit on Thursday Island (2016-2020) was significantly associated with reduced treatment delay, compared to the previous TB program period (2000-2005, p<0.04; 2006-2012, p<0.001). CONCLUSION: Minimising TB treatment delay in remote settings like the Torres Strait-Papua New Guinea cross-border region requires effective decentralised diagnosis and management structures. The results of this study suggest that the establishment of the Torres and Cape TB Control Unit on Thursday Island significantly improved time to commencement of effective TB treatment. Possible contributing factors include better TB education, cross-border communication and patient-centred care.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Papua Nova Guiné/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Resultado do Tratamento , Tempo para o Tratamento
5.
Am J Epidemiol ; 191(2): 255-270, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34017976

RESUMO

Many tuberculosis (TB) cases in low-incidence settings are attributed to reactivation of latent TB infection (LTBI) acquired overseas. We assessed the cost-effectiveness of community-based LTBI screening and treatment strategies in recent migrants to a low-incidence setting (Australia). A decision-analytical Markov model was developed that cycled 1 migrant cohort (≥11-year-olds) annually over a lifetime from 2020. Postmigration/onshore and offshore (screening during visa application) strategies were compared with existing policy (chest x-ray during visa application). Outcomes included TB cases averted and discounted cost per quality-adjusted life-year (QALY) gained from a health-sector perspective. Most recent migrants are young adults and cost-effectiveness is limited by their relatively low LTBI prevalence, low TB mortality risks, and high emigration probability. Onshore strategies cost at least $203,188 (Australian) per QALY gained, preventing approximately 2.3%-7.0% of TB cases in the cohort. Offshore strategies (screening costs incurred by migrants) cost at least $13,907 per QALY gained, preventing 5.5%-16.9% of cases. Findings were most sensitive to the LTBI treatment quality-of-life decrement (further to severe adverse events); with a minimal decrement, all strategies caused more ill health than they prevented. Additional LTBI strategies in recent migrants could only marginally contribute to TB elimination and are unlikely to be cost-effective unless screening costs are borne by migrants and potential LTBI treatment quality-of-life decrements are ignored.


Assuntos
Antituberculosos/economia , Tuberculose Latente/economia , Tuberculose Latente/epidemiologia , Programas de Rastreamento/economia , Migrantes/estatística & dados numéricos , Adolescente , Adulto , Austrália/epidemiologia , Criança , Análise Custo-Benefício , Feminino , Humanos , Incidência , Tuberculose Latente/tratamento farmacológico , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Prevalência , Anos de Vida Ajustados por Qualidade de Vida , Adulto Jovem
6.
Clin Infect Dis ; 73(1): e88-e96, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766718

RESUMO

BACKGROUND: Tuberculosis (TB) natural history remains poorly characterized, and new investigations are impossible as it would be unethical to follow up TB patients without treatment. METHODS: We considered the reports identified in a previous systematic review of studies from the prechemotherapy era, and extracted detailed data on mortality over time. We used a Bayesian framework to estimate the rates of TB-induced mortality and self-cure. A hierarchical model was employed to allow estimates to vary by cohort. Inference was performed separately for smear-positive TB (SP-TB) and smear-negative TB (SN-TB). RESULTS: We included 41 cohorts of SP-TB patients and 19 cohorts of pulmonary SN-TB patients in the analysis. The median estimates of the TB-specific mortality rates were 0.389 year-1 (95% credible interval [CrI], .335-.449) and 0.025 year-1 (95% CrI, .017-.035) for SP-TB and SN-TB patients, respectively. The estimates for self-recovery rates were 0.231 year-1 (95% CrI, .177-.288) and 0.130 year-1 (95% CrI, .073-.209) for SP-TB and SN-TB patients, respectively. These rates correspond to average durations of untreated TB of 1.57 years (95% CrI, 1.37-1.81) and 5.35 years (95% CrI, 3.42-8.23) for SP-TB and SN-TB, respectively, when assuming a non-TB-related mortality rate of 0.014 year-1 (ie, a 70-year life expectancy). CONCLUSIONS: TB-specific mortality rates are around 15 times higher for SP-TB than for SN-TB patients. This difference was underestimated dramatically in previous TB modeling studies, raising concerns about the accuracy of the associated predictions. Despite being less infectious, SN-TB may be responsible for equivalent numbers of secondary infections as SP-TB due to its much longer duration.


Assuntos
Tuberculose Pulmonar , Tuberculose , Teorema de Bayes , Estudos de Coortes , Humanos , Fatores de Tempo , Tuberculose Pulmonar/epidemiologia
7.
Thorax ; 76(11): 1131-1141, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893231

RESUMO

RATIONALE: The heterogeneity in efficacy observed in studies of BCG vaccination is not fully explained by currently accepted hypotheses, such as latitudinal gradient in non-tuberculous mycobacteria exposure. METHODS: We updated previous systematic reviews of the effectiveness of BCG vaccination to 31 December 2020. We employed an identical search strategy and inclusion/exclusion criteria to these earlier reviews, but reclassified several studies, developed an alternative classification system and considered study demography, diagnostic approach and tuberculosis (TB)-related epidemiological context. MAIN RESULTS: Of 21 included trials, those recruiting neonates and children aged under 5 were consistent in demonstrating considerable protection against TB for several years. Trials in high-burden settings with shorter follow-up also showed considerable protection, as did most trials in settings of declining burden with longer follow-up. However, the few trials performed in high-burden settings with longer follow-up showed no protection, sometimes with higher case rates in the vaccinated than the controls in the later follow-up period. CONCLUSIONS: The most plausible explanatory hypothesis for these results is that BCG protects against TB that results from exposure shortly after vaccination. However, we found no evidence of protection when exposure occurs later from vaccination, which would be of greater importance in trials in high-burden settings with longer follow-up. In settings of declining burden, most exposure occurs shortly following vaccination and the sustained protection observed for many years thereafter represents continued protection against this early exposure. By contrast, in settings of continued intense transmission, initial protection subsequently declines with repeated exposure to Mycobacterium tuberculosis or other pathogens.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Vacina BCG , Criança , Humanos , Recém-Nascido , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Vacinação
8.
Med J Aust ; 215(9): 427-432, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34477236

RESUMO

OBJECTIVES: To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN: Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( Reffv¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES: Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS: Assuming Reffv¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At Reffv¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At Reffv¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION: Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the Reffv¯ declines and vaccination coverage increases. Assuming the most plausible Reffv¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Coletiva , Vacinação em Massa/organização & administração , SARS-CoV-2/patogenicidade , Adolescente , Adulto , Fatores Etários , Austrália/epidemiologia , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Criança , Pré-Escolar , Simulação por Computador , Humanos , Imunogenicidade da Vacina , Vacinação em Massa/estatística & dados numéricos , Pessoa de Meia-Idade , Modelos Imunológicos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Cobertura Vacinal/organização & administração , Cobertura Vacinal/estatística & dados numéricos , Adulto Jovem
9.
Paediatr Respir Rev ; 39: 32-39, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34417121

RESUMO

Mathematical modelling has played a pivotal role in understanding the epidemiology of and guiding public health responses to the ongoing coronavirus disease of 2019 (COVID-19) pandemic. Here, we review the role of epidemiological models in understanding evolving epidemic characteristics, including the effects of vaccination and Variants of Concern (VoC). We highlight ways in which models continue to provide important insights, including (1) calculating the herd immunity threshold and evaluating its limitations; (2) verifying that nascent vaccines can prevent severe disease, infection, and transmission but may be less efficacious against VoC; (3) determining optimal vaccine allocation strategies under efficacy and supply constraints; and (4) determining that VoC are more transmissible and lethal than previously circulating strains, and that immune escape may jeopardize vaccine-induced herd immunity. Finally, we explore how models can help us anticipate and prepare for future stages of COVID-19 epidemiology (and that of other diseases) through forecasts and scenario projections, given current uncertainties and data limitations.


Assuntos
Vacinas contra COVID-19/provisão & distribuição , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/organização & administração , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Humanos , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/virologia , SARS-CoV-2
10.
Rural Remote Health ; 21(1): 6317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33562992

RESUMO

INTRODUCTION: Smear-positive pulmonary tuberculosis (PTB) requires rapid diagnosis and treatment to prevent ongoing transmission. Collection of two sputum specimens is considered the minimum requirement for the diagnosis of PTB but current guidelines in the Torres Strait Islands, Australia, recommend three sputum specimens; this frequently delays treatment initiation. METHODS: A retrospective study was performed to ascertain the diagnostic yield of sputum specimens collected in the Torres Strait Islands. The study assessed demographics and characteristics of all PTB cases diagnosed between 2000 and 2018, and assessed the diagnostic yield in 143 patients from whom at least three sputum specimens had been collected prior to treatment commencement. Incremental and cumulative yield was calculated for each sputum specimen. Data were further analysed using binary logistic regression to examine the association between selected characteristics and a smear-positive acid-fast bacilli (AFB) result. RESULTS: Overall, AFB was detected from the first or second sputum specimen in 97 of 101 PTB cases that were sputum smear positive. A smear-positive result was more common (odds ratio 2.84, 95% confidence interval 1.08-7.46) for Papua New Guinea nationals compared to Australian born patients. Of the 429 samples collected, 76 (18%) were of poor quality and the association between poor quality specimens and smear-negative results was significant (p<0.01). Among sputum smear-negative cases, 5/42 (12%) had three consecutive poor quality specimens. The most common collection modality in adults was voluntary expectoration; done in 391/429 (91%) of all specimens collected. Alternative specimen collection methods were mainly used in children; induced sputum 1/429 (0.2%), gastric aspirate 26/429 (6%) and nasopharyngeal aspirate 7/429 (1.6%). Errors with labelling, packaging and transportation occurred in 44 specimens from 15 patients. CONCLUSION: Two good quality specimens ensure adequate diagnostic yield for PTB and a third specimen should only be collected from patients with two negative specimens who have persistent symptoms. Ideally, decentralised Xpert Ultra® should be the frontline diagnostic test in remote settings, especially in settings like the Torres Strait Islands with high rates of drug-resistant TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Austrália , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Escarro , Tuberculose Pulmonar/diagnóstico
11.
Proc Biol Sci ; 287(1932): 20201405, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781946

RESUMO

Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Imunidade Coletiva , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , COVID-19 , Criança , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Erradicação de Doenças , Características da Família , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Instituições Acadêmicas , Estudos Soroepidemiológicos
12.
J Theor Biol ; 487: 110109, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31816294

RESUMO

Pathogen evolution is an imminent threat to global health that has warranted, and duly received, considerable attention within the medical, microbiological and modelling communities. Outbreaks of new pathogens are often ignited by the emergence and transmission of mutant variants descended from wild-type strains circulating in the community. In this work we investigate the stochastic dynamics of the emergence of a novel disease strain, introduced into a population in which it must compete with an existing endemic strain. In analogy with past work on single-strain epidemic outbreaks, we apply a branching process approximation to calculate the probability that the new strain becomes established. As expected, a critical determinant of the survival prospects of any invading strain is the magnitude of its reproduction number relative to that of the background endemic strain. Whilst in most circumstances this ratio must exceed unity in order for invasion to be viable, we show that differential control scenarios can lead to less-fit novel strains invading populations hosting a fitter endemic one. This analysis and the accompanying findings will inform our understanding of the mechanisms that have led to past instances of successful strain invasion, and provide valuable lessons for thwarting future drug-resistant strain incursions.


Assuntos
Epidemias , Surtos de Doenças , Probabilidade
13.
Malar J ; 19(1): 372, 2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33069245

RESUMO

BACKGROUND: District Health Information Systems 2 (DHIS2) is used for supporting health information management in 67 countries, including Solomon Islands. However, there have been few published evaluations of the performance of DHIS2-enhanced disease reporting systems, in particular for monitoring infectious diseases such as malaria. The aim of this study was to evaluate DHIS2 supported malaria reporting in Solomon Islands and to develop recommendations for improving the system. METHODS: The evaluation was conducted in three administrative areas of Solomon Islands: Honoria City Council, and Malaita and Guadalcanal Provinces. Records of nine malaria indicators including report submission date, total malaria cases, Plasmodium falciparum case record, Plasmodium vivax case record, clinical malaria, malaria diagnosed with microscopy, malaria diagnosed with (rapid diagnostic test) (RDT), record of drug stocks and records of RDT stocks from 1st January to 31st December 2016 were extracted from the DHIS2 database. The indicators permitted assessment in four core areas: availability, completeness, timeliness and reliability. To explore perceptions and point of view of the stakeholders on the performance of the malaria case reporting system, focus group discussions were conducted with health centre nurses, whilst in-depth interviews were conducted with stakeholder representatives from government (province and national) staff and World Health Organization officials who were users of DHIS2. RESULTS: Data were extracted from nine health centres in Honoria City Council and 64 health centres in Malaita Province. The completeness and timeliness from the two provinces of all nine indicators were 28.2% and 5.1%, respectively. The most reliable indicator in DHIS2 was 'clinical malaria' (i.e. numbers of clinically diagnosed malaria cases) with 62.4% reliability. Challenges to completeness were a lack of supervision, limited feedback, high workload, and a lack of training and refresher courses. Health centres located in geographically remote areas, a lack of regular transport, high workload and too many variables in the reporting forms led to delays in timely reporting. Reliability of reports was impacted by a lack of technical professionals such as statisticians and unavailability of tally sheets and reporting forms. CONCLUSION: The availability, completeness, timeliness and reliability of nine malaria indicators collected in DHIS2 were variable within the study area, but generally low. Continued onsite support, supervision, feedback and additional enhancements, such as electronic reporting will be required to further improve the malaria reporting system.


Assuntos
Gestão da Informação em Saúde/estatística & dados numéricos , Sistemas de Informação em Saúde/estatística & dados numéricos , Malária , Melanesia , Reprodutibilidade dos Testes
14.
Paediatr Respir Rev ; 35: 57-60, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32690354

RESUMO

Models have played an important role in policy development to address the COVID-19 outbreak from its emergence in China to the current global pandemic. Early projections of international spread influenced travel restrictions and border closures. Model projections based on the virus's infectiousness demonstrated its pandemic potential, which guided the global response to and prepared countries for increases in hospitalisations and deaths. Tracking the impact of distancing and movement policies and behaviour changes has been critical in evaluating these decisions. Models have provided insights into the epidemiological differences between higher and lower income countries, as well as vulnerable population groups within countries to help design fit-for-purpose policies. Economic evaluation and policies have combined epidemic models and traditional economic models to address the economic consequences of COVID-19, which have informed policy calls for easing restrictions. Social contact and mobility models have allowed evaluation of the pathways to safely relax mobility restrictions and distancing measures. Finally, models can consider future end-game scenarios, including how suppression can be achieved and the impact of different vaccination strategies.


Assuntos
Infecções por Coronavirus/epidemiologia , Política de Saúde , Modelos Teóricos , Pneumonia Viral/epidemiologia , Formulação de Políticas , Betacoronavirus , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Países em Desenvolvimento , Métodos Epidemiológicos , Humanos , Modelos Econômicos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Saúde Pública , Política Pública , SARS-CoV-2 , Viagem , Vacinas Virais/uso terapêutico
15.
Paediatr Respir Rev ; 35: 64-69, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32680824

RESUMO

Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that was declared a pandemic by the World Health Organization on 11th March, 2020. Response to this ongoing pandemic requires extensive collaboration across the scientific community in an attempt to contain its impact and limit further transmission. Mathematical modelling has been at the forefront of these response efforts by: (1) providing initial estimates of the SARS-CoV-2 reproduction rate, R0 (of approximately 2-3); (2) updating these estimates following the implementation of various interventions (with significantly reduced, often sub-critical, transmission rates); (3) assessing the potential for global spread before significant case numbers had been reported internationally; and (4) quantifying the expected disease severity and burden of COVID-19, indicating that the likely true infection rate is often orders of magnitude greater than estimates based on confirmed case counts alone. In this review, we highlight the critical role played by mathematical modelling to understand COVID-19 thus far, the challenges posed by data availability and uncertainty, and the continuing utility of modelling-based approaches to guide decision making and inform the public health response. †Unless otherwise stated, all bracketed error margins correspond to the 95% credible interval (CrI) for reported estimates.


Assuntos
Infecções por Coronavirus/epidemiologia , Tomada de Decisões , Modelos Teóricos , Pneumonia Viral/epidemiologia , Saúde Pública , Betacoronavirus , COVID-19 , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Coleta de Dados , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/fisiopatologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2 , Índice de Gravidade de Doença
16.
Clin Infect Dis ; 69(1): 159-166, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30383204

RESUMO

Although less well-recognized than for other infectious diseases, heterogeneity is a defining feature of tuberculosis (TB) epidemiology. To advance toward TB elimination, this heterogeneity must be better understood and addressed. Drivers of heterogeneity in TB epidemiology act at the level of the infectious host, organism, susceptible host, environment, and distal determinants. These effects may be amplified by social mixing patterns, while the variable latent period between infection and disease may mask heterogeneity in transmission. Reliance on notified cases may lead to misidentification of the most affected groups, as case detection is often poorest where prevalence is highest. Assuming that average rates apply across diverse groups and ignoring the effects of cohort selection may result in misunderstanding of the epidemic and the anticipated effects of control measures. Given this substantial heterogeneity, interventions targeting high-risk groups based on location, social determinants, or comorbidities could improve efficiency, but raise ethical and equity considerations.


Assuntos
Interações Hospedeiro-Patógeno , Tuberculose/epidemiologia , Comorbidade , Humanos , Prevalência , Fatores de Risco , Tuberculose/transmissão
17.
Emerg Infect Dis ; 25(3): 406-415, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789135

RESUMO

In this retrospective study, we used whole-genome sequencing (WGS) to delineate transmission dynamics, characterize drug-resistance markers, and identify risk factors of transmission among Papua New Guinea residents of the Torres Strait Protected Zone (TSPZ) who had tuberculosis diagnoses during 2010-2015. Of 117 isolates collected, we could acquire WGS data for 100; 79 were Beijing sublineage 2.2.1.1, which was associated with active transmission (odds ratio 6.190, 95% CI 2.221-18.077). Strains were distributed widely throughout the TSPZ. Clustering occurred more often within than between villages (p = 0.0013). Including 4 multidrug-resistant tuberculosis isolates from Australia citizens epidemiologically linked to the TSPZ into the transmission network analysis revealed 2 probable cross-border transmission events. All multidrug-resistant isolates (33/104) belonged to Beijing sublineage 2.2.1.1 and had high-level isoniazid and ethionamide co-resistance; 2 isolates were extensively drug resistant. Including WGS in regional surveillance could improve tuberculosis transmission tracking and control strategies within the TSPZ.


Assuntos
Emigração e Imigração , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Austrália/epidemiologia , Técnicas de Tipagem Bacteriana , Evolução Molecular , Genótipo , Geografia , História do Século XXI , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Papua Nova Guiné/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/história , Sequenciamento Completo do Genoma
18.
BMC Med ; 17(1): 208, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31752895

RESUMO

BACKGROUND: Tuberculosis (TB) control efforts are hampered by an imperfect understanding of TB epidemiology. The true age distribution of disease is unknown because a large proportion of individuals with active TB remain undetected. Understanding of transmission is limited by the asymptomatic nature of latent infection and the pathogen's capacity for late reactivation. A better understanding of TB epidemiology is critically needed to ensure effective use of existing and future control tools. METHODS: We use an agent-based model to simulate TB epidemiology in the five highest TB burden countries-India, Indonesia, China, the Philippines and Pakistan-providing unique insights into patterns of transmission and disease. Our model replicates demographically realistic populations, explicitly capturing social contacts between individuals based on local estimates of age-specific contact in household, school and workplace settings. Time-varying programmatic parameters are incorporated to account for the local history of TB control. RESULTS: We estimate that the 15-19-year-old age group is involved in more than 20% of transmission events in India, Indonesia, the Philippines and Pakistan, despite representing only 5% of the local TB incidence. According to our model, childhood TB represents around one fifth of the incident TB cases in these four countries. In China, three quarters of incident TB were estimated to occur in the ≥ 45-year-old population. The calibrated per-contact transmission risk was found to be similar in each of the five countries despite their very different TB burdens. CONCLUSIONS: Adolescents and young adults are a major driver of TB in high-incidence settings. Relying only on the observed distribution of disease to understand the age profile of transmission is potentially misleading.


Assuntos
Mycobacterium tuberculosis , Tuberculose/transmissão , Adolescente , Adulto , Distribuição por Idade , Idoso , Criança , Pré-Escolar , China/epidemiologia , Feminino , Humanos , Incidência , Índia/epidemiologia , Indonésia/epidemiologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Paquistão/epidemiologia , Filipinas/epidemiologia , Tuberculose/epidemiologia , Adulto Jovem
19.
J Antimicrob Chemother ; 74(1): 218-227, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295760

RESUMO

Background: Latent tuberculosis infection (LTBI) is a critical driver of the global burden of active TB, and therefore LTBI treatment is key for TB elimination. Treatment regimens for LTBI include self-administered daily isoniazid for 6 (6H) or 9 (9H) months, self-administered daily rifampicin plus isoniazid for 3 months (3RH), self-administered daily rifampicin for 4 months (4R) and weekly rifapentine plus isoniazid for 3 months self-administered (3HP-SAT) or administered by a healthcare worker as directly observed therapy (3HP-DOT). Data on the relative cost-effectiveness of these regimens are needed to assist policymakers and clinicians in selecting an LTBI regimen. Objectives: To evaluate the cost-effectiveness of all regimens for treating LTBI. Methods: We developed a Markov model to investigate the cost-effectiveness of 3HP-DOT, 3HP-SAT, 4R, 3RH, 9H and 6H for LTBI treatment in a cohort of 10000 adults with LTBI. Cost-effectiveness was evaluated from a health system perspective over a 20 year time horizon. Results: Compared with no preventive treatment, 3HP-DOT, 3HP-SAT, 4R, 3RH, 9H and 6H prevented 496, 470, 442, 418, 370 and 276 additional cases of active TB per 10000 patients, respectively. All regimens reduced costs and increased QALYs compared with no preventive treatment. 3HP was more cost-effective under DOT than under SAT at a cost of US$27948 per QALY gained. Conclusions: Three months of weekly rifapentine plus isoniazid is more cost-effective than other regimens. Greater recognition of the benefits of short-course regimens can contribute to the scale-up of prevention and achieving the 'End TB' targets.


Assuntos
Antituberculosos/administração & dosagem , Análise Custo-Benefício , Isoniazida/administração & dosagem , Tuberculose Latente/tratamento farmacológico , Rifampina/análogos & derivados , Adolescente , Adulto , Idoso , Antituberculosos/economia , Técnicas de Apoio para a Decisão , Quimioterapia Combinada/economia , Quimioterapia Combinada/métodos , Feminino , Custos de Cuidados de Saúde , Humanos , Isoniazida/economia , Tuberculose Latente/economia , Masculino , Pessoa de Meia-Idade , Rifampina/administração & dosagem , Rifampina/economia , Adulto Jovem
20.
BMC Infect Dis ; 19(1): 244, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866840

RESUMO

BACKGROUND: In current epidemiology of tuberculosis (TB), heterogeneity in infectiousness among TB patients is a challenge, which is not well studied. We aimed to quantify this heterogeneity and the presence of "super-spreading" events that can assist in designing optimal public health interventions. METHODS: TB epidemiologic investigation data notified between 1 January 2005 and 31 December 2015 from Victoria, Australia were used to quantify TB patients' heterogeneity in infectiousness and super-spreading events. We fitted a negative binomial offspring distribution (NBD) for the number of secondary infections and secondary active TB disease each TB patient produced. The dispersion parameter, k, of the NBD measures the level of heterogeneity, where low values of k (e.g. k < 1) indicate over-dispersion. Super-spreading was defined as patients causing as many or more secondary infections as the 99th centile of an equivalent homogeneous distribution. Contact infection was determined based on a tuberculin skin test (TST) result of ≥10 mm. A NBD model was fitted to identify index characteristics that were associated with the number of contacts infected and risk ratios (RRs) were used to quantify the strength of this association. RESULTS: There were 4190 (2312 pulmonary and 1878 extrapulmonary) index TB patients and 18,030 contacts. A total of 15,522 contacts were tested with TST, of whom 3213 had a result of ≥10 mm. The dispersion parameter, k for secondary infections was estimated at 0.16 (95%CI 0.14-0.17) and there were 414 (9.9%) super-spreading events. From the 3213 secondary infections, 2415 (75.2%) were due to super-spreading events. There were 226 contacts who developed active TB disease and a higher level of heterogeneity was found for this outcome than for secondary infection, with k estimated at 0.036 (95%CI 0.025-0.046). In regression analyses, we found that infectiousness was greater among index patients found by clinical presentation and those with bacteriological confirmation. CONCLUSION: TB transmission is highly over dispersed and super-spreading events are responsible for a substantial majority of secondary infections. Heterogeneity of transmission and super-spreading are critical issues to consider in the design of interventions and models of TB transmission dynamics.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Busca de Comunicante , Humanos , Estudos Retrospectivos , Tuberculose/epidemiologia , Tuberculose/transmissão , Vitória/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA