Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(39): e2413100121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292747

RESUMO

The adenosine di-phosphate (ADP) ribosylation factor (Arf) small guanosine tri-phosphate (GTP)ases function as molecular switches to activate signaling cascades that control membrane organization in eukaryotic cells. In Arf1, the GDP/GTP switch does not occur spontaneously but requires guanine nucleotide exchange factors (GEFs) and membranes. Exchange involves massive conformational changes, including disruption of the core ß-sheet. The mechanisms by which this energetically costly switch occurs remain to be elucidated. To probe the switch mechanism, we coupled pressure perturbation with nuclear magnetic resonance (NMR), Fourier Transform infra-red spectroscopy (FTIR), small-angle X-ray scattering (SAXS), fluorescence, and computation. Pressure induced the formation of a classical molten globule (MG) ensemble. Pressure also favored the GDP to GTP transition, providing strong support for the notion that the MG ensemble plays a functional role in the nucleotide switch. We propose that the MG ensemble allows for switching without the requirement for complete unfolding and may be recognized by GEFs. An MG-based switching mechanism could constitute a pervasive feature in Arfs and Arf-like GTPases, and more generally, the evolutionarily related (Ras-like small GTPases) Rags and Gα GTPases.


Assuntos
Fator 1 de Ribosilação do ADP , Guanosina Difosfato , Guanosina Trifosfato , Guanosina Difosfato/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fator 1 de Ribosilação do ADP/química , Fator 1 de Ribosilação do ADP/genética , Guanosina Trifosfato/metabolismo , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Modelos Moleculares
2.
Proc Natl Acad Sci U S A ; 120(26): e2215556120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339210

RESUMO

Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.


Assuntos
Anticódon , RNA , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios X , RNA de Transferência de Lisina/química
3.
Proc Natl Acad Sci U S A ; 117(36): 22122-22127, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839332

RESUMO

Cnidarian fluorescent protein (FP) derivatives such as GFP, mCherry, and mEOS2 have been widely used to monitor gene expression and protein localization through biological imaging because they are considered functionally inert. We demonstrate that FPs specifically bind amyloid fibrils formed from many natural peptides and proteins. FPs do not bind other nonamyloid fibrillar structures such as microtubules or actin filaments and do not bind to amorphous aggregates. FPs can also bind small aggregates formed during the lag phase and early elongation phase of fibril formation and can inhibit amyloid fibril formation in a dose-dependent manner. These findings suggest caution should be taken in interpreting FP-fusion protein localization data when amyloid structures may be present. Given the pathological significance of amyloid-related species in some diseases, detection and inhibition of amyloid fibril formation using FPs can provide insights on developing diagnostic tools.


Assuntos
Proteínas Amiloidogênicas/química , Proteínas de Fluorescência Verde/química , Microscopia Confocal/métodos , Sequência de Aminoácidos , Humanos , Proteínas Luminescentes , Conformação Proteica , Proteína Vermelha Fluorescente
4.
Biotechnol Bioeng ; 118(2): 809-822, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107976

RESUMO

In this study, the binding of multimodal chromatographic ligands to the IgG1 FC domain were studied using nuclear magnetic resonance and molecular dynamics simulations. Nuclear magnetic resonance experiments carried out with chromatographic ligands and a perdeuterated 15 N-labeled FC domain indicated that while single-mode ion exchange ligands interacted very weakly throughout the FC surface, multimodal ligands containing negatively charged and aromatic moieties interacted with specific clusters of residues with relatively high affinity, forming distinct binding regions on the FC . The multimodal ligand-binding sites on the FC were concentrated in the hinge region and near the interface of the CH 2 and CH 3 domains. Furthermore, the multimodal binding sites were primarily composed of positively charged, polar, and aliphatic residues in these regions, with histidine residues exhibiting some of the strongest binding affinities with the multimodal ligand. Interestingly, comparison of protein surface property data with ligand interaction sites indicated that the patch analysis on FC corroborated molecular-level binding information obtained from the nuclear magnetic resonance experiments. Finally, molecular dynamics simulation results were shown to be qualitatively consistent with the nuclear magnetic resonance results and to provide further insights into the binding mechanisms. An important contribution to multimodal ligand-FC binding in these preferred regions was shown to be electrostatic interactions and π-π stacking of surface-exposed histidines with the ligands. This combined biophysical and simulation approach has provided a deeper molecular-level understanding of multimodal ligand-FC interactions and sets the stage for future analyses of even more complex biotherapeutics.


Assuntos
Sítios de Ligação de Anticorpos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Humanos
5.
Langmuir ; 37(41): 12188-12203, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34633195

RESUMO

In this study, NMR and molecular dynamics simulations were employed to study IgG1 FC binding to multimodal surfaces. Gold nanoparticles functionalized with two multimodal cation-exchange ligands (Capto and Nuvia) were synthesized and employed to carry out solution-phase NMR experiments with the FC. Experiments with perdeuterated 15N-labeled FC and the multimodal surfaces revealed micromolar residue-level binding affinities as compared to millimolar binding affinities with these ligands in free solution, likely due to cooperativity and avidity effects. The binding of FC with the Capto ligand nanoparticles was concentrated near an aliphatic cluster in the CH2/CH3 interface, which corresponded to a focused hydrophobic region. In contrast, binding with the Nuvia ligand nanoparticles was more diffuse and corresponded to a large contiguous positive electrostatic potential region on the side face of the FC. Results with lower-ligand-density nanoparticles indicated a decrease in binding affinity for both systems. For the Capto ligand system, several aliphatic residues on the FC that were important for binding to the higher-density surface did not interact with the lower-density nanoparticles. In contrast, no significant difference was observed in the interacting residues on the FC to the high- and low-ligand density Nuvia surfaces. The binding affinities of FC to both multimodal-functionalized nanoparticles decreased in the presence of salt due to the screening of multiple weak interactions of polar and positively charged residues. For the Capto ligand nanoparticle system, this resulted in an even more focused hydrophobic binding region in the interface of the CH2 and CH3 domains. Interestingly, for the Nuvia ligand nanoparticles, the presence of salt resulted in a large transition from a diffuse binding region to the same focused binding region determined for Capto nanoparticles at 150 mM salt. Molecular dynamics simulations corroborated the NMR results and provided important insights into the molecular basis of FC binding to these different multimodal systems containing clustered (observed at high-ligand densities) and nonclustered ligand surfaces. This combined biophysical and simulation approach provided significant insights into the interactions of FC with multimodal surfaces and sets the stage for future analyses with even more complex biotherapeutics.


Assuntos
Nanopartículas Metálicas , Simulação de Dinâmica Molecular , Ouro , Imunoglobulina G , Ligantes , Espectroscopia de Ressonância Magnética
6.
Proc Natl Acad Sci U S A ; 115(35): E8153-E8161, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104366

RESUMO

The effect of introducing internal cavities on protein native structure and global stability has been well documented, but the consequences of these packing defects on folding free-energy landscapes have received less attention. We investigated the effects of cavity creation on the folding landscape of the leucine-rich repeat protein pp32 by high-pressure (HP) and urea-dependent NMR and high-pressure small-angle X-ray scattering (HPSAXS). Despite a modest global energetic perturbation, cavity creation in the N-terminal capping motif (N-cap) resulted in very strong deviation from two-state unfolding behavior. In contrast, introduction of a cavity in the most stable, C-terminal half of pp32 led to highly concerted unfolding, presumably because the decrease in stability by the mutations attenuated the N- to C-terminal stability gradient present in WT pp32. Interestingly, enlarging the central cavity of the protein led to the population under pressure of a distinct intermediate in which the N-cap and repeats 1-4 were nearly completely unfolded, while the fifth repeat and the C-terminal capping motif remained fully folded. Thus, despite modest effects on global stability, introducing internal cavities can have starkly distinct repercussions on the conformational landscape of a protein, depending on their structural and energetic context.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Proteínas de Ligação a RNA , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X
7.
Glycobiology ; 30(11): 847-858, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32304324

RESUMO

The chemoenzymatic synthesis of heparin, through a multienzyme process, represents a critical challenge in providing a safe and effective substitute for this animal-sourced anticoagulant drug. D-glucuronyl C5-epimerase (C5-epi) is an enzyme acting on a heparin precursor, N-sulfoheparosan, catalyzing the reversible epimerization of D-glucuronic acid (GlcA) to L-iduronic acid (IdoA). The absence of reliable assays for C5-epi has limited elucidation of the enzymatic reaction and kinetic mechanisms. Real time and offline assays are described that rely on 1D 1H NMR to study the activity of C5-epi. Apparent steady-state kinetic parameters for both the forward and the pseudo-reverse reactions of C5-epi are determined for the first time using polysaccharide substrates directly relevant to the chemoenzymatic synthesis and biosynthesis of heparin. The forward reaction shows unusual sigmoidal kinetic behavior, and the pseudo-reverse reaction displays nonsaturating kinetic behavior. The atypical sigmoidal behavior of the forward reaction was probed using a range of buffer additives. Surprisingly, the addition of 25 mM each of CaCl2 and MgCl2 resulted in a forward reaction exhibiting more conventional Michaelis-Menten kinetics. The addition of 2-O-sulfotransferase, the next enzyme involved in heparin synthesis, in the absence of 3'-phosphoadenosine 5'-phosphosulfate, also resulted in C5-epi exhibiting a more conventional Michaelis-Menten kinetic behavior in the forward reaction accompanied by a significant increase in apparent Vmax. This study provides critical information for understanding the reaction kinetics of C5-epi, which may result in improved methods for the chemoenzymatic synthesis of bioengineered heparin.


Assuntos
Carboidratos Epimerases/metabolismo , Ácido Glucurônico/metabolismo , Ácido Idurônico/metabolismo , Biocatálise , Configuração de Carboidratos , Carboidratos Epimerases/isolamento & purificação , Ácido Glucurônico/química , Humanos , Ácido Idurônico/química , Cinética
8.
Biophys J ; 116(3): 445-453, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30685054

RESUMO

The observation of two-state unfolding for many small single-domain proteins by denaturants has led to speculation that protein sequences may have evolved to limit the population of partially folded states that could be detrimental to fitness. How such strong cooperativity arises from a multitude of individual interactions is not well understood. Here, we investigate the stability and folding cooperativity of the C-terminal domain of the ribosomal protein L9 in the pressure-temperature plane using site-specific NMR. In contrast to apparent cooperative unfolding detected with denaturant-induced and thermal-induced unfolding experiments and stopped-flow refolding studies at ambient pressure, NMR-detected pressure unfolding revealed significant deviation from two-state behavior, with a core region that was selectively destabilized by increasing temperature. Comparison of pressure-dependent NMR signals from both the folded and unfolded states revealed the population of at least one invisible excited state at atmospheric pressure. The core destabilizing cavity-creating I98A mutation apparently increased the cooperativity of the loss of folded-state peak intensity while also increasing the population of this invisible excited state present at atmospheric pressure. These observations highlight how local stability is subtly modulated by sequence to tune protein conformational landscapes and illustrate the ability of pressure- and temperature-dependent studies to reveal otherwise hidden states.


Assuntos
Pressão , Proteínas Ribossômicas/química , Temperatura , Cinética , Simulação de Dinâmica Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Ribossômicas/genética
9.
Nucleic Acids Res ; 44(D1): D560-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26626150

RESUMO

The oncogenic transformation of normal cells into malignant, rapidly proliferating cells requires major alterations in cell physiology. For example, the transformed cells remodel their metabolic processes to supply the additional demand for cellular building blocks. We have recently demonstrated essential metabolic processes in tumor progression through the development of a methodological analysis of gene expression. Here, we present the Metabolic gEne RApid Visualizer (MERAV, http://merav.wi.mit.edu), a web-based tool that can query a database comprising ∼4300 microarrays, representing human gene expression in normal tissues, cancer cell lines and primary tumors. MERAV has been designed as a powerful tool for whole genome analysis which offers multiple advantages: one can search many genes in parallel; compare gene expression among different tissue types as well as between normal and cancer cells; download raw data; and generate heatmaps; and finally, use its internal statistical tool. Most importantly, MERAV has been designed as a unique tool for analyzing metabolic processes as it includes matrixes specifically focused on metabolic genes and is linked to the Kyoto Encyclopedia of Genes and Genomes pathway search.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Neoplasias/genética , Software , Linhagem Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/normas , Humanos , Internet , Redes e Vias Metabólicas/genética , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/normas
10.
Biophys J ; 111(11): 2368-2376, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926838

RESUMO

A complete description of the pathways and mechanisms of protein folding requires a detailed structural and energetic characterization of the conformational ensemble along the entire folding reaction coordinate. Simulations can provide this level of insight for small proteins. In contrast, with the exception of hydrogen exchange, which does not monitor folding directly, experimental studies of protein folding have not yielded such structural and energetic detail. NMR can provide residue specific atomic level structural information, but its implementation in protein folding studies using chemical or temperature perturbation is problematic. Here we present a highly detailed structural and energetic map of the entire folding landscape of the leucine-rich repeat protein, pp32 (Anp32), obtained by combining pressure-dependent site-specific 1H-15N HSQC data with coarse-grained molecular dynamics simulations. The results obtained using this equilibrium approach demonstrate that the main barrier to folding of pp32 is quite broad and lies near the unfolded state, with structure apparent only in the C-terminal region. Significant deviation from two-state unfolding under pressure reveals an intermediate on the folded side of the main barrier in which the N-terminal region is disordered. A nonlinear temperature dependence of the population of this intermediate suggests a large heat capacity change associated with its formation. The combination of pressure, which favors the population of folding intermediates relative to chemical denaturants; NMR, which allows their observation; and constrained structure-based simulations yield unparalleled insight into protein folding mechanisms.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Dobramento de Proteína , Sequência de Aminoácidos , Modelos Moleculares , Pressão , Domínios Proteicos , Desdobramento de Proteína , Termodinâmica
11.
J Am Chem Soc ; 138(46): 15260-15266, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27781428

RESUMO

Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Proteínas Ribossômicas/química , Geobacillus stearothermophilus/química , Pressão , Conformação Proteica , Domínios Proteicos , Proteínas Ribossômicas/genética
12.
Biotechnol Bioeng ; 112(12): 2417-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26109045

RESUMO

Plant polyphenols are known to have varying antimicrobial potencies, including direct antibacterial activity, synergism with antibiotics and suppression of bacterial virulence. We performed the in vitro oligomerization of resveratrol catalyzed by soybean peroxidase, and the two isomers (resveratrol-trans-dihydrodimer and pallidol) produced were tested for antimicrobial activity. The resveratrol-trans-dihydrodimer displayed antimicrobial activity against the Gram-positive bacteria Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus (minimum inhibitory concentration (MIC) = 15.0, 125, and 62.0 µM, respectively) and against Gram-negative Escherichia coli (MIC = 123 µM, upon addition of the efflux pump inhibitor Phe-Arg-ß-naphthylamide). In contrast, pallidol had no observable antimicrobial activity against all tested strains. Transcriptomic analysis implied downregulation of ABC transporters, genes involved in cell division and DNA binding proteins. Flow cytometric analysis of treated cells revealed a rapid collapse in membrane potential and a substantial decrease in total DNA content. The active dimer showed >90% inhibition of DNA gyrase activity, in vitro, by blocking the ATP binding site of the enzyme. We thus propose that the resveratrol-trans-dihydrodimer acts to: (1) disrupt membrane potential; and (2) inhibit DNA synthesis. In summary, we introduce the mechanisms of action and the initial evaluation of an active bactericide, and a platform for the development of polyphenolic antimicrobials.


Assuntos
Anti-Infecciosos/metabolismo , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peroxidase/metabolismo , Estilbenos/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/fisiologia , Perfilação da Expressão Gênica , Bactérias Gram-Positivas/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxirredução , Resveratrol , Glycine max/enzimologia
13.
Biomacromolecules ; 16(6): 1818-26, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25848833

RESUMO

A green manufacturing technique, reactive extrusion (REx), was employed to improve the mechanical properties of polylactide (PLA). To achieve this goal, a fully biosourced PLA based polymer blend was conceived by incorporating small quantities of poly(ω-hydroxytetradecanoic acid) (PC14). PLA/PC14 blends were compatibilized by transesterification reactions promoted by 200 ppm titanium tetrabutoxide (Ti(OBu)4) during REx. REx for 15 min at 150 rpm and 200 °C resulted in enhanced blend mechanical properties while minimizing losses in PLA molecular weight. SEM analysis of the resulting compatibilized phase-separated blends showed good adhesion between dispersed PC14 phases within the continuous PLA phase. Direct evidence for in situ synthesis of PLA-b-PC14 copolymers was obtained by HMBC and HSQC NMR experiments. The size of the dispersed phase was tuned by the screw speed to "tailor" the blend morphology. In the presence of 200 ppm Ti(OBu)4, inclusion of only 5% PC14 increased the elongation at break of PLA from 3 to 140% with only a slight decrease in the tensile modulus (3200 to 2900 MPa). Furthermore, PLA's impact strength was increased by 2.4× that of neat PLA for 20% PC14 blends prepared by REx. Blends of PLA and PC14 are expected to expand the potential uses of PLA-based materials.


Assuntos
Química Verde/métodos , Ácidos Mirísticos/química , Poliésteres/química , Butanóis/química , Compostos Organometálicos/química , Polimerização
14.
Fuel (Lond) ; 141: 39-45, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25404762

RESUMO

Biofuels and biomaterials, produced from lignocellulosic feedstock, require facile access to cellulose and hemicellulose to be competitive with petroleum processing and sugar-based fermentation. Physical-chemical barriers resulting from lignin complicates the hydrolysis biomass into fermentable sugars. Thus, the amount of lignin within a substrate is critical in determining biomass processing. The application of 13C cross-polarization, magic-angle spinning, and solid-state nuclear magnetic resonance for the direct quantification of lignin content in biomass is examined. Using a standard curve constructed from pristine lignin and cellulose, the lignin content of a biomass sample is accurately determined through direct measurement without chemical or enzymatic pre-treatment.

15.
Langmuir ; 30(44): 13205-16, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25310519

RESUMO

Although multimodal chromatography offers significant potential for bioseparations, there is a lack of molecular level understanding of the nature of protein binding in these systems. In this study a nanoparticle system is employed that can simulate a chromatographic resin surface while also being amenable to isothermal titration calorimetry (ITC) and solution NMR. ITC and NMR titration experiments are carried out with (15)N-labeled ubiquitin to investigate the interactions of ubiquitin with nanoparticles functionalized with two industrially important multimodal ligands. The ITC results suggest that binding to both multimodal ligand surfaces is entropically driven over a range of temperatures and that this is due primarily to the release of surface bound waters. In order to reveal structural details of the interaction process, binding-induced chemical shift changes obtained from the NMR experiments are employed to obtain dissociation constants of individual amino acid residues on the protein surface. The residue level information obtained from NMR is then used to identify a preferred binding face on ubiquitin for interaction to both multimodal ligand surfaces. In addition, electrostatic potential and spatial aggregation propensity maps are used to determine important protein surface property data that are shown to correlate well with the molecular level information obtained from NMR. Importantly, the data demonstrate that the cluster of interacting residues on the protein surface act co-operatively to give rise to multimodal binding affinities several orders of magnitude greater than those obtained previously for interactions with free solution ligands. The use of NMR and ITC to study protein interactions with functionalized nanoparticles offers a new tool for obtaining important molecular and thermodynamic insights into protein affinity in multimodal chromatographic systems.


Assuntos
Nanopartículas/química , Termodinâmica , Ubiquitina/química , Calorimetria , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
16.
Nucleic Acids Res ; 40(Web Server issue): W505-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22638579

RESUMO

High-throughput technologies including transcriptional profiling, proteomics and reverse genetics screens provide detailed molecular descriptions of cellular responses to perturbations. However, it is difficult to integrate these diverse data to reconstruct biologically meaningful signaling networks. Previously, we have established a framework for integrating transcriptional, proteomic and interactome data by searching for the solution to the prize-collecting Steiner tree problem. Here, we present a web server, SteinerNet, to make this method available in a user-friendly format for a broad range of users with data from any species. At a minimum, a user only needs to provide a set of experimentally detected proteins and/or genes and the server will search for connections among these data from the provided interactomes for yeast, human, mouse, Drosophila melanogaster and Caenorhabditis elegans. More advanced users can upload their own interactome data as well. The server provides interactive visualization of the resulting optimal network and downloadable files detailing the analysis and results. We believe that SteinerNet will be useful for researchers who would like to integrate their high-throughput data for a specific condition or cellular response and to find biologically meaningful pathways. SteinerNet is accessible at http://fraenkel.mit.edu/steinernet.


Assuntos
Redes Reguladoras de Genes , Proteômica/métodos , Software , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Humanos , Internet , Camundongos , Transdução de Sinais , Leveduras/genética , Leveduras/metabolismo
17.
Langmuir ; 29(45): 13873-82, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24128197

RESUMO

Mechanical resilience of bone tissue decreases with age. The ability to comprehensively probe and understand bone properties could help alleviate this problem. One important aspect of bone quality that has recently been made evident is the presence of dilatational bands formed by osteocalcin (OC) and osteopontin (OPN), which contribute to fracture toughness. However, experimental evidence of the structural role of these two proteins at the organic-mineral interface in bone is still needed. Solid state nuclear magnetic resonance (SSNMR) is emerging as a useful technique in probing molecular level aspects of bone. Here, we present the first SSNMR study of bone tissue from genetically modified mice lacking OC and/or OPN. Probing the mineral phase, the organic matrix and their interface revealed that, despite the absence of OC and OPN, the organic matrix and mineral were well preserved, and the overall exposure of collagen to hydroxyapatite (HA) nanoparticles was hardly affected. However, the proximity to the HA surface was slightly increased for a number of bone components including less abundant amino acids like lysine, suggesting that this is how the tissue compensates for the lack of OC and OPN. Taken together, the NMR data supports the recently proposed model, in which the contribution of OC-OPN to fracture toughness is related to their presence at the extrafibrillar organic-mineral interfaces, where they reinforce the network of mineralized fibrils and form dilatational bands. In an effort toward further understanding the structural role of individual amino acids of low abundance in bone, we then explored the possibility of specific (13)C enrichment of mouse bone, and report the first SSNMR spectra of 97% (13)C lysine-enriched tissue. Results show that such isotopic enrichment allows valuable molecular-level structural information to be extracted, and sheds light on post-translational modifications undergone by specific amino acids in vivo.


Assuntos
Fêmur/metabolismo , Minerais/metabolismo , Compostos Orgânicos/metabolismo , Osteocalcina/metabolismo , Osteopontina/metabolismo , Animais , Fêmur/fisiologia , Espectroscopia de Ressonância Magnética , Camundongos
18.
Langmuir ; 29(1): 158-67, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23199297

RESUMO

Nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations were employed in concert with chromatography to provide insight into the effect of urea on protein-ligand interactions in multimodal (MM) chromatography. Chromatographic experiments with a protein library in ion exchange (IEX) and MM systems indicated that, while urea had a significant effect on protein retention and selectivity for a range of proteins in MM systems, the effects were much less pronounced in IEX. NMR titration experiments carried out with a multimodal ligand, and isotopically enriched human ubiquitin indicated that, while the ligand binding face of ubiquitin remained largely intact in the presence of urea, the strength of binding was decreased. MD simulations were carried out to provide further insight into the effect of urea on MM ligand binding. These results indicated that, while the overall ligand binding face of ubiquitin remained the same, there was a reduction in the occupancy of the MM ligand interaction region along with subtle changes in the residues involved in these interactions. This work demonstrates the effectiveness of urea in enhancing selectivity in MM chromatographic systems and also provides an in-depth analysis of how MM ligand-protein interactions are altered in the presence of this fluid phase modifier.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Ureia/química , Cromatografia por Troca Iônica , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Proteínas/efeitos dos fármacos , Proteínas/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ureia/farmacologia
19.
Langmuir ; 29(34): 10841-9, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23906189

RESUMO

We identify specific acylphosphatase (AcP) residues that interact with silica nanoparticles (SNPs) using a combined NMR spectroscopy and proteomics-mass spectrometry approach. AcP associated with 4- and 15-nm diameter SNPs through a common and specific interaction surface formed by amino acids from the two α-helices of the protein. Greater retention of native protein structure was obtained on 4-nm SNPs than on 15-nm particles, presumably due to greater surface curvature-induced protein stabilization with the smaller SNPs. These results demonstrate that proteins may undergo specific and size-dependent orientation on nanoparticle surfaces. Our approach can be broadly applied to various protein-material systems to help understand in much greater detail the protein-nanomaterial interface; it would also encourage better modeling, and thus prediction and design, of the behavior of functional proteins adsorbed onto different surfaces.


Assuntos
Nanopartículas/química , Proteínas/química , Dióxido de Silício/química , Propriedades de Superfície
20.
Protein Expr Purif ; 88(2): 196-200, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23314347

RESUMO

PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression and purification of uniformly (13)C- and (15)N-labeled PAPf39 peptide, through expression as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH.


Assuntos
Amiloide/química , Amiloide/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Sequência de Aminoácidos , Amiloide/isolamento & purificação , Amiloide/metabolismo , Escherichia coli/genética , Humanos , Inteínas , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Proteínas Tirosina Fosfatases/isolamento & purificação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/genética , Ubiquitina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA