Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Pharmacol Exp Ther ; 382(3): 277-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717448

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B; OMIM #252920) is a lethal, pediatric, neuropathic, autosomal recessive, and lysosomal storage disease with no approved therapy. Patients are deficient in the activity of N-acetyl-alpha-glucosaminidase (NAGLU; EC 3.2.150), necessary for normal lysosomal degradation of the glycosaminoglycan heparan sulfate (HS). Tralesinidase alfa (TA), a fusion protein comprised of recombinant human NAGLU and a modified human insulin-like growth factor 2, is in development as an enzyme replacement therapy that is administered via intracerebroventricular (ICV) infusion, thus circumventing the blood brain barrier. Previous studies have confirmed ICV infusion results in widespread distribution of TA throughout the brains of mice and nonhuman primates. We assessed the long-term tolerability, pharmacology, and clinical efficacy of TA in a canine model of MPS IIIB over a 20-month study. Long-term administration of TA was well tolerated as compared with administration of vehicle. TA was widely distributed across brain regions, which was confirmed in a follow-up 8-week pharmacokinetic/pharmacodynamic study. MPS IIIB dogs treated for up to 20 months had near-normal levels of HS and nonreducing ends of HS in cerebrospinal fluid and central nervous system (CNS) tissues. TA-treated MPS IIIB dogs performed better on cognitive tests and had improved CNS pathology and decreased cerebellar volume loss relative to vehicle-treated MPS IIIB dogs. These findings demonstrate the ability of TA to prevent or limit the biochemical, pathologic, and cognitive manifestations of canine MPS IIIB disease, thus providing support of its potential long-term tolerability and efficacy in MPS IIIB subjects. SIGNIFICANCE STATEMENT: This work illustrates the efficacy and tolerability of tralesinidase alfa as a potential therapeutic for patients with mucopolysaccharidosis type IIIB (MPS IIIB) by documenting that administration to the central nervous system of MPS IIIB dogs prevents the accumulation of disease-associated glycosaminoglycans in lysosomes, hepatomegaly, cerebellar atrophy, and cognitive decline.


Assuntos
Mucopolissacaridose III , Animais , Encéfalo/metabolismo , Criança , Modelos Animais de Doenças , Cães , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/uso terapêutico , Humanos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologia
2.
J Pharmacol Exp Ther ; 361(2): 312-321, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28298527

RESUMO

Although new targeted therapies, such as ibrutinib and idelalisib, have made a large impact on non-Hodgkin's lymphoma (NHL) patients, the disease is often fatal because patients are initially resistant to these targeted therapies, or because they eventually develop resistance. New drugs and treatments are necessary for these patients. One attractive approach is to inhibit multiple parallel pathways that drive the growth of these hematologic tumors, possibly prolonging the duration of the response and reducing resistance. Early clinical trials have tested this approach by dosing two drugs in combination in NHL patients. We discovered a single molecule, MDVN1003 (1-(5-amino-2,3-dihydro-1H-inden-2-yl)-3-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine), that inhibits Bruton's tyrosine kinase and phosphatidylinositol-3-kinase δ, two proteins regulated by the B cell receptor that drive the growth of many NHLs. In this report, we show that this dual inhibitor prevents the activation of B cells and inhibits the phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2, two downstream mediators that are important for this process. Additionally, MDVN1003 induces cell death in a B cell lymphoma cell line but not in an irrelevant erythroblast cell line. Importantly, we found that this orally bioavailable dual inhibitor reduced tumor growth in a B cell lymphoma xenograft model more effectively than either ibrutinib or idelalisib. Taken together, these results suggest that dual inhibition of these two key pathways by a single molecule could be a viable approach for treatment of NHL patients.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfoma de Células B/tratamento farmacológico , Linfoma não Hodgkin/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Antineoplásicos/farmacologia , Linfócitos B/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Linfoma de Células B/metabolismo , Linfoma não Hodgkin/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Piperidinas , Purinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinazolinonas/farmacologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Bioorg Med Chem Lett ; 26(20): 5103-5109, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27614414

RESUMO

Temozolomide is a chemotherapeutic agent that is used in the treatment of glioblastoma and other malignant gliomas. It acts through DNA alkylation, but treatment is limited by its systemic toxicity and neutralization of DNA alkylation by upregulation of the O6-methylguanine-DNA methyltransferase gene. Both of these limiting factors can be addressed by achieving higher concentrations of TMZ in the brain. Our research has led to the discovery of new analogs of temozolomide with improved brain:plasma ratios when dosed in vivo in rats. These compounds are imidazotetrazine analogs, expected to act through the same mechanism as temozolomide. With reduced systemic exposure, these new agents have the potential to improve efficacy and therapeutic index in the treatment of glioblastoma.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Encéfalo/metabolismo , Dacarbazina/análogos & derivados , Animais , Antineoplásicos Alquilantes/sangue , Antineoplásicos Alquilantes/farmacocinética , Área Sob a Curva , Linhagem Celular Tumoral , Cromatografia Líquida , Dacarbazina/sangue , Dacarbazina/farmacocinética , Dacarbazina/farmacologia , Humanos , Ratos , Espectrometria de Massas em Tandem , Temozolomida
4.
Breast Cancer Res ; 16(1): R7, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24451109

RESUMO

INTRODUCTION: The androgen receptor (AR) is widely expressed in breast cancers and has been proposed as a therapeutic target in estrogen receptor alpha (ER) negative breast cancers that retain AR. However, controversy exists regarding the role of AR, particularly in ER + tumors. Enzalutamide, an AR inhibitor that impairs nuclear localization of AR, was used to elucidate the role of AR in preclinical models of ER positive and negative breast cancer. METHODS: We examined nuclear AR to ER protein ratios in primary breast cancers in relation to response to endocrine therapy. The effects of AR inhibition with enzalutamide were examined in vitro and in preclinical models of ER positive and negative breast cancer that express AR. RESULTS: In a cohort of 192 women with ER + breast cancers, a high ratio of AR:ER (≥2.0) indicated an over four fold increased risk for failure while on tamoxifen (HR = 4.43). The AR:ER ratio had an independent effect on risk for failure above ER % staining alone. AR:ER ratio is also an independent predictor of disease-free survival (HR = 4.04, 95% CI: 1.68, 9.69; p = 0.002) and disease specific survival (HR = 2.75, 95% CI: 1.11, 6.86; p = 0.03). Both enzalutamide and bicalutamide inhibited 5-alpha-dihydrotestosterone (DHT)-mediated proliferation of breast cancer lines in vitro; however, enzalutamide uniquely inhibited estradiol (E2)-mediated proliferation of ER+/AR + breast cancer cells. In MCF7 xenografts (ER+/AR+) enzalutamide inhibited E2-driven tumor growth as effectively as tamoxifen by decreasing proliferation. Enzalutamide also inhibited DHT- driven tumor growth in both ER positive (MCF7) and negative (MDA-MB-453) xenografts, but did so by increasing apoptosis. CONCLUSIONS: AR to ER ratio may influence breast cancer response to traditional endocrine therapy. Enzalutamide elicits different effects on E2-mediated breast cancer cell proliferation than bicalutamide. This preclinical study supports the initiation of clinical studies evaluating enzalutamide for treatment of AR+ tumors regardless of ER status, since it blocks both androgen- and estrogen- mediated tumor growth.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Antagonistas de Receptores de Andrógenos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Feniltioidantoína/análogos & derivados , Anilidas/uso terapêutico , Animais , Antineoplásicos Hormonais/uso terapêutico , Apoptose/efeitos dos fármacos , Benzamidas , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Intervalo Livre de Doença , Feminino , Humanos , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/uso terapêutico , Compostos de Tosil/uso terapêutico , Transplante Heterólogo
5.
Toxicol Rep ; 10: 357-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923444

RESUMO

Mucopolysaccharidosis Type IIIB (MPS IIIB) is an ultrarare, fatal pediatric disease with no approved therapy. It is caused by mutations in the gene encoding for lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). Tralesinidase alfa (TA) is a fusion protein comprised of recombinant NAGLU and a modified human insulin-like growth factor 2 that is being developed as an enzyme replacement therapy for MPS IIIB. Since MPS IIIB is a pediatric disease the safety/toxicity, pharmacokinetics and biodistribution of TA were evaluated in juvenile non-human primates that were administered up to 5 weekly intracerebroventricular (ICV) or single intravenous (IV) infusions of TA. TA administered by ICV slow-, ICV isovolumetric bolus- or IV-infusion was well-tolerated, and no effects were observed on clinical observations, electrocardiographic or ophthalmologic parameters, or respiratory rates. The drug-related changes observed were limited to increased cell infiltrates in the CSF and along the ICV catheter track after ICV administration. These findings were not associated with functional changes and are associated with the use of ICV catheters. The CSF PK profiles were consistent across all conditions tested and TA distributed widely in the CNS after ICV administration. Anti-drug antibodies were observed but did not appear to significantly affect the exposure to TA. Correlations between TA concentrations in plasma and brain regions in direct contact with the cisterna magna suggest glymphatic drainage may be responsible for clearance of TA from the CNS. The data support the administration of TA by isovolumetric bolus ICV infusion to pediatric patients with MPS IIIB.

6.
Nat Chem Biol ; 5(10): 699-704, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19763097

RESUMO

Phenotypic diversity exists even within isogenic populations of cells. Such nongenetic individuality may have wide implications for our understanding of many biological processes. The field of study concerned with the investigation of nongenetic individuality, also known as the 'biology of noise', is ripe with exciting scientific opportunities and challenges.


Assuntos
Evolução Molecular , Expressão Gênica , Fenótipo , Envelhecimento/genética , Envelhecimento/fisiologia , Comunicação Celular , Processos Estocásticos
7.
PLoS One ; 15(12): e0243006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33259552

RESUMO

ß-hexosaminidase is an enzyme responsible for the degradation of gangliosides, glycans, and other glycoconjugates containing ß-linked hexosamines that enter the lysosome. GM2 gangliosidoses, such as Tay-Sachs and Sandhoff, are lysosomal storage disorders characterized by ß-hexosaminidase deficiency and subsequent lysosomal accumulation of its substrate metabolites. These two diseases result in neurodegeneration and early mortality in children. A significant difference between these two disorders is the accumulation in Sandhoff disease of soluble oligosaccharide metabolites that derive from N- and O-linked glycans. In this paper we describe our results from a longitudinal biochemical study of a feline model of Sandhoff disease and an ovine model of Tay-Sachs disease to investigate the accumulation of GM2/GA2 gangliosides, a secondary biomarker for phospholipidosis, bis-(monoacylglycero)-phosphate, and soluble glycan metabolites in both tissue and fluid samples from both animal models. While both Sandhoff cats and Tay-Sachs sheep accumulated significant amounts of GM2 and GA2 gangliosides compared to age-matched unaffected controls, the Sandhoff cats having the more severe disease, accumulated larger amounts of gangliosides compared to Tay-Sachs sheep in their occipital lobes. For monitoring glycan metabolites, we developed a quantitative LC/MS assay for one of these free glycans in order to perform longitudinal analysis. The Sandhoff cats showed significant disease-related increases in this glycan in brain and in other matrices including urine which may provide a useful clinical tool for measuring disease severity and therapeutic efficacy. Finally, we observed age-dependent increasing accumulation for a number of analytes, especially in Sandhoff cats where glycosphingolipid, phospholipid, and glycan levels showed incremental increases at later time points without signs of peaking. This large animal natural history study for Sandhoff and Tay-Sachs is the first of its kind, providing insight into disease progression at the biochemical level. This report may help in the development and testing of new therapies to treat these disorders.


Assuntos
Gangliosidoses GM2/metabolismo , Polissacarídeos/metabolismo , Animais , Gatos , Modelos Animais de Doenças , Fosfolipídeos/metabolismo
8.
Sci Rep ; 10(1): 20365, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230178

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B) is an autosomal recessive lysosomal storage disorder caused by the deficiency of alpha-N-acetylglucosaminidase activity, leading to increased levels of nondegraded heparan sulfate (HS). A mouse model has been useful to evaluate novel treatments for MPS IIIB, but has limitations. In this study, we evaluated the naturally occurring canine model of MPS IIIB for the onset and progression of biochemical and neuropathological changes during the preclinical stages (onset approximately 24-30 months of age) of canine MPS IIIB disease. Even by 1 month of age, MPS IIIB dogs had elevated HS levels in brain and cerebrospinal fluid. Analysis of histopathology of several disease-relevant regions of the forebrain demonstrated progressive lysosomal storage and microglial activation despite a lack of cerebrocortical atrophy in the oldest animals studied. More pronounced histopathology changes were detected in the cerebellum, where progressive lysosomal storage, astrocytosis and microglial activation were observed. Microglial activation was particularly prominent in cerebellar white matter and within the deep cerebellar nuclei, where neuron loss also occurred. The findings in this study will form the basis of future assessments of therapeutic efficacy in this large animal disease model.


Assuntos
Acetilglucosaminidase/deficiência , Cerebelo/patologia , Córtex Cerebral/patologia , Doenças do Cão/patologia , Mucopolissacaridose III/patologia , Prosencéfalo/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Doenças do Cão/metabolismo , Cães , Feminino , Heparitina Sulfato/metabolismo , Histocitoquímica , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Mucopolissacaridose III/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Prosencéfalo/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
9.
ACS Med Chem Lett ; 7(12): 1161-1166, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994757

RESUMO

The aberrant activation of B-cells has been implicated in several types of cancers and hematological disorders. BTK and PI3Kδ are kinases responsible for B-cell signal transduction, and inhibitors of these enzymes have demonstrated clinical benefit in certain types of lymphoma. Simultaneous inhibition of these pathways could result in more robust responses or overcome resistance as observed in single agent use. We report a series of novel compounds that have low nanomolar potency against both BTK and PI3Kδ as well as acceptable PK properties that could be useful in the development of treatments against B-cell related diseases.

10.
Proteins ; 58(4): 790-801, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15657928

RESUMO

The protein YbiV from Escherichia coli K12 MG1655 is a hypothetical protein with sequence homology to the haloacid dehalogenase (HAD) superfamily of proteins. Although numerous members of this family have been identified, the functions of few are known. Using the crystal structure, sequence analysis, and biochemical assays, we have characterized YbiV as a HAD phosphatase. The crystal structure of YbiV reveals a two-domain protein, one with the characteristic HAD hydrolase fold, the other an inserted alpha/beta fold. In an effort to understand the mechanism, we also solved and report the structures of YbiV in complex with beryllofluoride (BeF3-) and aluminum trifluoride (AlF3), which have been shown to mimic the phosphorylated intermediate and transition state for hydrolysis, respectively, in analogy to other HAD phosphatases. Analysis of the structures reveals the substrate-binding cavity, which is hydrophilic in nature. Both structure and sequence homology indicate YbiV may be a sugar phosphatase, which is supported by biochemical assays that measured the release of free phosphate on a number of sugar-like substrates. We also investigated available genomic and functional data in an effort to determine the physiological substrate.


Assuntos
Escherichia coli/enzimologia , Hidrolases/química , Fosfoproteínas Fosfatases/química , Monoéster Fosfórico Hidrolases/química , Monofosfato de Adenosina/química , Compostos de Alumínio/química , Sequência de Aminoácidos , Berílio/química , Sítios de Ligação , Catálise , Clonagem Molecular , Cristalografia por Raios X , Bases de Dados de Proteínas , Proteínas de Escherichia coli , Fluoretos/química , Flúor/química , Genômica/métodos , Hidrólise , Cinética , Modelos Químicos , Modelos Moleculares , Modelos Estatísticos , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
Elife ; 42015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25986605

RESUMO

Two ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase. IPA also inhibits PERK but, paradoxically, activates it at low concentrations, resulting in a bell-shaped activation profile. We reconstituted IPA-activation of PERK-mediated eIF2α phosphorylation from purified components. We estimate that under conditions of maximal activation less than 15% of PERK molecules in the reaction are occupied by IPA. We propose that IPA binding biases the PERK kinase towards its active conformation, which trans-activates apo-PERK molecules. The mechanism by which partial occupancy with an inhibitor can activate kinases may be wide-spread and carries major implications for design and therapeutic application of kinase inhibitors.


Assuntos
Trifosfato de Adenosina/farmacologia , Endorribonucleases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/síntese química , Animais , Bioensaio , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Camundongos , Mimetismo Molecular , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição de Fator Regulador X , Radioisótopos de Enxofre , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-22539924

RESUMO

Protein-folding occurs in several intracellular locations including the endoplasmic reticulum and mitochondria. In normal conditions there is a balance between the levels of unfolded proteins and protein folding machinery. Disruption of homeostasis and an accumulation of unfolded proteins trigger stress responses, or unfolded protein responses (UPR), in these organelles. These pathways signal to increase the folding capacity, inhibit protein import or expression, increase protein degradation, and potentially trigger cell death. Many aging-related neurodegenerative diseases involve the accumulation of misfolded proteins in both the endoplasmic reticulum and mitochondria. The exact participation of the UPRs in the onset of neurodegeneration is unclear, but there is significant evidence for the alteration of these pathways in the endoplasmic reticulum and mitochondria. Here we will discuss the involvement of endoplasmic reticulum and mitochondrial stress and the possible contributions of the UPR in these organelles to the development of two neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's disease (AD).

13.
Nat Cell Biol ; 12(10): 954-62, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20852627

RESUMO

In the Saccharomyces cerevisiae pheromone-response pathway, the transcription factor Ste12 is inhibited by two mitogen-activated protein (MAP)-kinase-responsive regulators, Dig1 and Dig2. These two related proteins bind to distinct regions of Ste12 but are redundant in their inhibition of Ste12-dependent gene expression. Here we describe three functions for Dig1 that are non-redundant with those of Dig2. First, the removal of Dig1 results in a specific increase in intrinsic and extrinsic noise in the transcriptional outputs of the mating pathway. Second, in dig1Δ cells, Ste12 relocalizes from the nucleoplasmic distribution seen in wild-type cells into discrete subnuclear foci. Third, genome-wide insertional chromatin immunoprecipitation studies revealed that Ste12-dependent genes have increased interchromosomal interactions in dig1Δ cells. These findings suggest that the regulation of gene expression through long-range gene interactions, a widely observed phenomenon, comes at the cost of increased noise. Consequently, cells may have evolved mechanisms to suppress noise by controlling these interactions.


Assuntos
Cromossomos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
14.
EMBO J ; 24(13): 2265-83, 2005 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-15944737

RESUMO

Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is well known to terminate cell signaling by sorting activated receptors to the MVB/lysosomal pathway. Here we identify a distinct role of Hrs in promoting rapid recycling of endocytosed signaling receptors to the plasma membrane. This function of Hrs is specific for receptors that recycle in a sequence-directed manner, in contrast to default recycling by bulk membrane flow, and is distinguishable in several ways from previously identified membrane-trafficking functions of Hrs/Vps27p. In particular, Hrs function in sequence-directed recycling does not require other mammalian Class E gene products involved in MVB/lysosomal sorting, nor is receptor ubiquitination required. Mutational studies suggest that the VHS domain of Hrs plays an important role in sequence-directed recycling. Disrupting Hrs-dependent recycling prevented functional resensitization of the beta(2)-adrenergic receptor, converting the temporal profile of cell signaling by this prototypic G protein-coupled receptor from sustained to transient. These studies identify a novel function of Hrs in a cargo-specific recycling mechanism, which is critical to controlling functional activity of the largest known family of signaling receptors.


Assuntos
Endocitose/fisiologia , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Antagonistas de Receptores Adrenérgicos beta 2 , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Mutação , Fosfoproteínas/genética , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , ATPases Vacuolares Próton-Translocadoras , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA