Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Am J Obstet Gynecol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871238

RESUMO

BACKGROUND: In recent years, pragmatic metformin use in pregnancy has stretched to include prediabetes, type 2 diabetes, gestational diabetes and (most recently) pre-eclampsia. With its expanded use, however, concerns of unintended harm have been raised. OBJECTIVE: We developed an experimental primate model and applied triple-quadruple pole LC mass spectrometry (UHPLC-QQQ) for direct quantitation of maternal and fetal tissue metformin levels with detailed fetal biometry and histopathology. STUDY DESIGN: Within 30 days of confirmed conception (defined as early pregnancy), n=13 time-bred (TMB) Rhesus dams with gestations designated for fetal necropsy were initiated on twice daily human dose-equivalent 10 mg/kg metformin or vehicle control. Pregnant dams were maintained as pairs and fed either a control chow or 36% fat Western-style diet (WSD). Metformin or placebo vehicle control were delivered in a variety of treats while animals were separated via a slide. A Cesarean was performed at G145, and amniotic fluid and blood were collected and the fetus and placenta were delivered. The fetus was immediately necropsied by trained primate center personnel. All fetal organs were dissected, measured, sectioned, and processed per clinical standards. Fluid and tissue metformin levels were assayed using validated UHPLC-QQQ in SRM against standard curves. RESULTS: Among the n=13 G145 pregnancies with fetal necropsy, n=1 dam and its fetal tissues had detectable metformin levels despite being allocated to the vehicle control group (>1 µM metformin/kg maternal weight or fetal/placental tissue), while a second fetus allocated to the vehicle control group had severe fetal growth restriction (birthweight 248.32 g, <1%) and was suspected of having a fetal congenital condition. After excluding these two fetal gestations from further analyses, 11 fetuses from dams initiated on either vehicle control (n=4, 3 female, 1 male fetuses) or 10 mg/kg metformin (n=7, 5 female, 2 male fetuses) were available for analyses. Among dams initiated on metformin by G30 (regardless of maternal diet), we observed significant bioaccumulation within the fetal kidney (0.78-6.06 µmol/kg, mean 2.48 µmol/kg) , liver (0.16-0.73 µmol/kg, mean 0.38 µmol/kg), fetal gut (0.28-1.22 µmol/kg, mean 0.70 µmol/kg), amniotic fluid (0.43-3.33 µmol/L, mean 1.88 µmol/L), placenta (0.16-1.0 µmol/kg , mean 0.50 µmol/kg) and fetal serum (0 -0.66 µmol/L , mean 0.23 µmol/L ), and fetal urine (4.1-174.1 µmol/L mean 38.5 µmol/L ), with fetal levels near biomolar equivalent to maternal levels (maternal serum 0.18-0.86 µmol/L , mean 0.46 µmol/L; maternal urine 42.6-254.0 µmol/L , mean 149.3 µmol/L). WSD feeding neither accelerated nor reduced metformin bioaccumulations in maternal or fetal serum, urine, amniotic fluid, placenta nor fetal tissues. In these 11 animals, fetal bioaccumulation of metformin was associated with less fetal skeletal muscle (57% lower cross-sectional area of gastrocnemius) and decreased liver, heart, and retroperitoneal fat masses (p<0.05), collectively driving lower delivery weight (p<0.0001) without changing the crown-rump length. Sagittal sections of fetal kidneys demonstrated delayed maturation, with disorganized glomerular generations and increased cortical thickness; this renal dysmorphology was not accompanied by structural nor functional changes indicative of renal insufficiency. CONCLUSIONS: We demonstrate fetal bioaccumulation of metformin with associated fetal growth restriction and renal dysmorphology following maternal initiation of the drug within 30 days of conception in primates. Given these results and the prevalence of metformin use during pregnancy, additional investigation of any potential immediate and enduring effects of prenatal metformin use is warranted.

2.
Am J Physiol Endocrinol Metab ; 324(6): E577-E588, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37134140

RESUMO

Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate ß-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future ß-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter ß-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Gravidez , Animais , Masculino , Feminino , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Ocidental/efeitos adversos , Primatas/metabolismo , Expressão Gênica , Ilhotas Pancreáticas/metabolismo
3.
Am J Physiol Endocrinol Metab ; 318(2): E145-E151, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794263

RESUMO

Sirtuin 1 (SIRT1) and general control of amino acid synthesis 5 (GCN5) regulate mitochondrial biogenesis via opposing modulation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) acetylation status and activity. However, the combined contribution of SIRT1 and GCN5 to skeletal muscle metabolism and endurance performance in vivo is unknown. In this study, we investigated the impact of combined skeletal muscle-specific overexpression of SIRT1 and deletion of GCN5 on glucose homeostasis, skeletal muscle mitochondrial biogenesis and function, and metabolic adaptation to endurance exercise training in mice. We generated mice with combined and tamoxifen-inducible skeletal muscle-specific overexpression of SIRT1 and knockout of GCN5 (dTG) and floxed [wild type (WT)] littermates using a Cre-LoxP approach. All mice were treated with tamoxifen at 5-6 wk of age, and 4-7 wk later glucose homeostasis, skeletal muscle contractile function, mitochondrial function, and the effects of 14 days of voluntary wheel running on expression of metabolic proteins and exercise capacity were assessed. There was no difference in oral glucose tolerance, skeletal muscle contractile function, mitochondrial abundance, or maximal respiratory capacity between dTG and WT mice. Additionally, there were no genotype differences in exercise performance and markers of mitochondrial biogenesis after 14 days of voluntary wheel running. These results demonstrate that combined overexpression of SIRT1 and loss of GCN5 in vivo does not promote metabolic remodeling in skeletal muscle of sedentary or exercise-trained mice.


Assuntos
Glucose/metabolismo , Homeostase/genética , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Sirtuína 1/biossíntese , Sirtuína 1/genética , Fatores de Transcrição de p300-CBP/genética , Limiar Anaeróbio/genética , Animais , Intolerância à Glucose/genética , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Contração Muscular/fisiologia , Biogênese de Organelas , Corrida
4.
Am J Physiol Cell Physiol ; 317(5): C964-C968, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461343

RESUMO

Whether the histone deacetylase (HDAC) and sirtuin families of protein deacetylases regulate insulin-stimulated glucose uptake, independent of their transcriptional effects, has not been studied. Our objective was to determine the nontranscriptional role of HDACs and sirtuins in regulation of skeletal muscle insulin action. Basal and insulin-stimulated glucose uptake and signaling and acetylation were assessed in L6 myotubes and skeletal muscle from C57BL/6J mice that were treated acutely (1 h) with HDAC (trichostatin A, panobinostat, TMP195) and sirtuin inhibitors (nicotinamide). Treatment of L6 myotubes with HDAC inhibitors or skeletal muscle with a combination of HDAC and sirtuin inhibitors increased tubulin and pan-protein acetylation, demonstrating effective impairment of HDAC and sirtuin deacetylase activities. Despite this, neither basal nor insulin-stimulated glucose uptake or insulin signaling was impacted. Acute reduction of the deacetylase activity of HDACs and/or sirtuins does not impact insulin action in skeletal muscle.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Insulina/metabolismo , Músculo Esquelético/enzimologia , Mioblastos/enzimologia , Animais , Células Cultivadas , Feminino , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos
5.
Am J Physiol Endocrinol Metab ; 317(1): E172-E182, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136202

RESUMO

Polycystic ovary syndrome (PCOS) is associated with high rates of obesity and metabolic dysfunction. Repeated passive heat exposure (termed heat therapy) is a novel lifestyle intervention for improving health in obese women with PCOS. The purpose of this study was to examine changes in metabolic function in obese women with PCOS following heat therapy. Eighteen age- and BMI-matched obese women with PCOS (age: 27 ± 1 yr, BMI: 41.3 ± 1.1 kg/m-2) were assigned to heat therapy (HT) or time control (CON). HT participants underwent 30 one-hour hot tub sessions over 8-10 wk, while CON participants completed all testing but did not undergo heat therapy. Before (Pre), at the mid-point (Mid), and following (Post) 8-10 wk of heat therapy, metabolic health was assessed using a 2-h oral glucose tolerance test, a subcutaneous abdominal fat biopsy (Pre-Post only), and other blood markers relating to metabolic function. HT participants exhibited improved fasting glucose (Pre: 105 ± 3, Post: 89 ± 5mg/dl; P = 0.001), glucose area under the curve (AUC) (Pre: 18,698 ± 1,045, Post: 16,987 ± 1,017 mg·dl-1·min-1; P = 0.028) and insulin AUC (Pre: 126,924 ± 11,730, Post: 91,233 ± 14,429 IU l-1·min-1; P = 0.012). Adipocyte insulin signaling (p-AKT at Ser-473 with 1.2 nM insulin) increased in HT (Pre: 0.29 ± 0.14, Post: 0.93 ± 0.29 AU; P = 0.021). Additionally, serum testosterone declined in HT participants (Pre: 51 ± 7, Post: 34 ± 4 ng/dl; P = 0.033). No parameters changed over time in CON, and no change in BMI was observed in either group. HT substantially improved metabolic risk profile in obese women with PCOS. HT also reduced androgen excess and may improve PCOS symptomology.


Assuntos
Tecido Adiposo/metabolismo , Glicemia/metabolismo , Temperatura Alta/uso terapêutico , Resistência à Insulina/fisiologia , Insulina/metabolismo , Síndrome do Ovário Policístico/terapia , Adulto , Índice de Massa Corporal , Feminino , Teste de Tolerância a Glucose , Humanos , Imersão , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Obesidade/terapia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/metabolismo
6.
Am J Physiol Endocrinol Metab ; 316(6): E1024-E1035, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888860

RESUMO

Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. We used Cre-LoxP methodology to generate mice with germline [muscle creatine kinase promoter (P-MCK and C-MCK)] or inducible [tamoxifen-activated, human skeletal actin promoter (P-iHSA and C-iHSA)] knockout of p300 or CBP. A subset of P-MCK and C-MCK mice were switched to a calorie-restriction diet (60% of ad libitum intake) or high-fat diet at 10 wk of age. For P-iHSA and C-iHSA mice, knockout was induced at 10 wk of age. At 13-15 wk of age, we measured whole-body energy expenditure, oral glucose tolerance, and/or ex vivo skeletal muscle insulin sensitivity. Although p300 and CBP protein abundance and mRNA expression were reduced 55%-90% in p300 and CBP knockout mice, there were no genotype differences in energy expenditure or fasting glucose and insulin concentrations. Moreover, neither loss of p300 or CBP impacted oral glucose tolerance or skeletal muscle insulin sensitivity, nor did their loss impact alterations in these parameters in response to a calorie restriction or high-fat diet. Muscle-specific loss of either p300 or CBP, be it germline or in adulthood, does not impact energy expenditure, glucose tolerance, or skeletal muscle insulin action.


Assuntos
Proteína de Ligação a CREB/genética , Proteína p300 Associada a E1A/genética , Metabolismo Energético/genética , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Proteína p300 Associada a E1A/metabolismo , Técnicas de Inativação de Genes/métodos , Mutação em Linhagem Germinativa , Teste de Tolerância a Glucose , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R627-R637, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29791203

RESUMO

Systemic insulin resistance and glucose intolerance occur with as little as 3 days of a high-fat diet (HFD) in mice and humans; the mechanisms that initiate acute insulin resistance are unknown. Most laboratories house mice at 22°C, which is below their thermoneutral temperature (~30°C). Cold stress has been shown to increase white adipose tissue (WAT) browning, alter lipid trafficking, and impair immune function, whereas energy intake and expenditure decrease with increasing ambient temperature; importantly, dysregulation of these parameters has been strongly linked to obesity-induced insulin resistance. Therefore, we compared acute changes in glucose metabolism and the metabolic phenotype in lean mice in response to a control diet or HFD housed at standard vivarium (22°C) and thermoneutral (30°C) temperatures. Glucose intolerance occurred following 1 or 5 days of HFD and was independent of housing temperature or adiposity; however, the reduction in tissue-specific glucose clearance with HFD diverged by temperature with reduced brown adipose tissue (BAT) glucose uptake at 22°C but reduced soleus glucose uptake at 30°C. Fasting glucose, food intake, and energy expenditure were significantly lower at 30°C, independent of diet. Additionally, markers of browning in both BAT and inguinal subcutaneous WAT, but not perigonadal epididymal WAT, decreased at 30°C. Together, we find housing temperature has a significant impact on the cellular pathways that regulate glucose tolerance in response to an acute HFD exposure. Thus, even short-term changes in housing temperature should be highly considered in interpretation of metabolic studies in mice.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glicemia/metabolismo , Regulação da Temperatura Corporal , Dieta Hiperlipídica , Metabolismo Energético , Intolerância à Glucose/sangue , Abrigo para Animais , Gordura Subcutânea/metabolismo , Temperatura , Tecido Adiposo Marrom/fisiopatologia , Animais , Biomarcadores/sangue , Ritmo Circadiano , Classe Ia de Fosfatidilinositol 3-Quinase/deficiência , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Modelos Animais de Doenças , Ingestão de Alimentos , Comportamento Alimentar , Intolerância à Glucose/etiologia , Intolerância à Glucose/fisiopatologia , Intolerância à Glucose/psicologia , Resistência à Insulina , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gordura Subcutânea/fisiopatologia , Fatores de Tempo
8.
Lipids Health Dis ; 17(1): 127, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29807532

RESUMO

BACKGROUND: Previous studies of lipoproteins in patients with sepsis have been performed on density fractions isolated by conventional ultracentrifugation that are heterogeneous and provide no information about the cargo of apoproteins present in the immunochemically distinct subclasses that populate the density classes. Since apoproteins are now known to have important roles in host defense, we have separated these subclasses according to their apoprotein content and characterized their changes during experimental endotoxemia in human volunteers. METHODS: We have studied apoB- and apoA containing lipoprotein subclasses in twelve healthy male volunteers before and for 8 h after a single dose of endotoxin (ET; 2 µg/kg) to stimulate inflammation. RESULTS: After endotoxin, TG, TC, apoB and the apoB-containing lipoprotein cholesterol-rich subclass LpB and two of the three triglyceride-rich subclasses (TGRLP: Lp:B:C, LpB:C:E+ LpB:E) all declined. In contrast, the third TGRLP, LpA-II:B:C:D:E ("complex particle"), after reaching a nadir at 4 h rose 49% above baseline, p = .006 at 8 h and became the dominant particle in the TGRLP pool. This increment exceeds the threshold of > 25% change required for designation as an acute phase protein. Simultaneous decreases in LpA-I:A-II and LpB:C:E + LpB:E suggest that these subclasses undergo post-translational modification and contribute to the formation of new LpA-II:B:C:D:E particles. CONCLUSIONS: We have identified a new acute phase lipoprotein whose apoprotein constituents have metabolic and immunoregulatory properties applicable to host defense that make it well constituted to engage in the APR.


Assuntos
Inflamação/induzido quimicamente , Lipoproteínas/isolamento & purificação , Proteínas de Fase Aguda/isolamento & purificação , Adulto , Feminino , Humanos , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/toxicidade , Lipoproteínas/classificação , Lipoproteínas/imunologia , Masculino , Adulto Jovem
9.
FASEB J ; 30(4): 1623-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26712218

RESUMO

The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO). mKO mice were indistinguishable from their wild-type/floxed littermates, with no differences in lean mass, skeletal muscle structure, fiber type, respirometry flux, or metabolites of fatty acid and amino acid metabolism.Ex vivomuscle function in extensor digitorum longus and soleus muscles, including peak stress and time to fatigue, as well asin vivorunning capacity were also comparable. Moreover, expected adaptations to a 20 d voluntary wheel running regime were not compromised in mKO mice. Taken together, these findings demonstrate that p300 is not required for the normal development or functioning of adult skeletal muscle, nor is it required for endurance exercise-mediated mitochondrial adaptations.-LaBarge, S. A., Migdal, C. W., Buckner, E. H., Okuno, H., Gertsman, I., Stocks, B., Barshop, B. A., Nalbandian, S. R., Philp, A., McCurdy, C. E., Schenk, S. p300 is not required for metabolic adaptation to endurance exercise training.


Assuntos
Adaptação Fisiológica/fisiologia , Proteína p300 Associada a E1A/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Animais , Proteína p300 Associada a E1A/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Expressão Gênica , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Musculares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Am J Physiol Endocrinol Metab ; 307(9): E764-72, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25159328

RESUMO

Skeletal muscle sirtuin 1 (SIRT1) expression is reduced under insulin-resistant conditions, such as those resulting from high-fat diet (HFD) feeding and obesity. Herein, we investigated whether constitutive activation of SIRT1 in skeletal muscle prevents HFD-induced muscle insulin resistance. To address this, mice with muscle-specific overexpression of SIRT1 (mOX) and wild-type (WT) littermates were fed a control diet (10% calories from fat) or HFD (60% of calories from fat) for 12 wk. Magnetic resonance imaging and indirect calorimetry were used to measure body composition and energy expenditure, respectively. Whole body glucose metabolism was assessed by oral glucose tolerance test, and insulin-stimulated glucose uptake was measured at a physiological insulin concentration in isolated soleus and extensor digitorum longus muscles. Although SIRT1 was significantly overexpressed in muscle of mOX vs. WT mice, body weight and percent body fat were similarly increased by HFD for both genotypes, and energy expenditure was unaffected by diet or genotype. Importantly, impairments in glucose tolerance and insulin-mediated activation of glucose uptake in skeletal muscle that occurred with HFD feeding were not prevented in mOX mice. In contrast, mOX mice showed enhanced postischemic cardiac functional recovery compared with WT mice, confirming the physiological functionality of the SIRT1 transgene in this mouse model. Together, these results demonstrate that activation of SIRT1 in skeletal muscle alone does not prevent HFD-induced glucose intolerance, weight gain, or insulin resistance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sirtuína 1/metabolismo , Regulação para Cima , Adiposidade , Animais , Composição Corporal , Metabolismo Energético , Coração/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Obesidade/etiologia , Obesidade/fisiopatologia , Consumo de Oxigênio , Distribuição Aleatória , Sirtuína 1/genética , Aumento de Peso
11.
J Endocr Soc ; 8(4): bvae018, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38379854

RESUMO

Context: Earlier nuclear magnetic resonance spectroscopy (NMR) studies of plasma lipoproteins estimated by size as small, medium, and large particles, demonstrated hypothyroidism was associated with increases in very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and intermediate-density lipoprotein (IDL) subclass particle number but variable changes in the high-density lipoprotein (HDL) subclasses. These disparate changes in HDL might be explained by reduced activity of the thyroid hormone-dependent remodeling proteins whose subclass specificity may be obscured when the 5 HDL subclasses identified by NMR are combined by size. Objective: This work aimed to determine whether directional changes in particle number of individually measured HDL subclasses correlate with reduced activity of their thyroid hormone-dependent remodeling proteins in hypothyroid individuals. Methods: VLDL, LDL, IDL, and HDL subclasses were measured by NMR in 13 thyroidectomized individuals 1 month following thyroid hormone withdrawal and 3 months after replacement. Changes in particle numbers in each subclass were compared when expressed individually and by size. Results: Following thyroid hormone withdrawal, plasma lipids and VLDL, LDL, and IDL subclass particle number increased. HDL particle number nearly doubled in very small HDL-1 (P = .04), declined in small HDL-2 (P = .02), and increased 2-fold in HDL-5 (P = .0009). Conclusion: The increment in HDL-1 and decline in HDL-2 subclasses is consistent with their precursor-product relationship and reduced lecithin cholesterol acyltransferase activity while the almost 2-fold increase in large HDL-5 is indicative of diminished action of hepatic lipase, phospholipid transfer protein, and endothelial lipase. These findings are inapparent when the 5 subclasses are expressed conventionally by size. This linking of specific HDL subclasses with HDL remodeling protein function provides new details about the specificity of their interactions.

12.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826380

RESUMO

Early-life exposure to maternal obesity or a maternal calorically dense Western-style diet (WSD) is strongly associated with a greater risk of metabolic diseases in offspring, most notably insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). Prior studies in our well-characterized Japanese macaque model demonstrated that offspring of dams fed a WSD, even when weaned onto a control (CTR) diet, had reductions in skeletal muscle mitochondrial metabolism and increased skeletal muscle insulin resistance compared to offspring of dams on CTR diet. In the current study, we employed a nested design to test for differences in gene expression in skeletal muscle from lean 3-year-old adolescent offspring from dams fed a maternal WSD in both the presence and absence of maternal obesity or lean dams fed a CTR diet. We included offspring weaned to both a WSD or CTR diet to further account for differences in response to post-weaning diet and interaction effects between diets. Overall, we found that a maternal WSD fed to dams during pregnancy and lactation was the principal driver of differential gene expression (DEG) in offspring muscle at this time point. We identified key gene pathways important in insulin signaling including PI3K-Akt and MAP-kinase, regulation of muscle regeneration, and transcription-translation feedback loops, in both male and female offspring. Muscle DEG showed no measurable difference between offspring of obese dams on WSD compared to those of lean dams fed WSD. A post-weaning WSD effected offspring transcription only in individuals from the maternal CTR diet group but not in maternal WSD group. Collectively, we identify that maternal diet composition has a significant and lasting impact on offspring muscle transcriptome and influences later transcriptional response to WSD in muscle, which may underlie the increased metabolic disease risk in offspring.

13.
Diabetes ; 72(12): 1766-1780, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725952

RESUMO

Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS: In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.


Assuntos
Resistência à Insulina , Humanos , Animais , Gravidez , Feminino , Adolescente , Resistência à Insulina/fisiologia , Macaca fuscata/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Insulina/metabolismo , Dieta Ocidental/efeitos adversos , Ácidos Graxos/metabolismo , Ceramidas/metabolismo , Dieta Hiperlipídica
14.
Hepatol Commun ; 7(2): e0014, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36691970

RESUMO

Pediatric NAFLD has distinct and variable pathology, yet causation remains unclear. We have shown that maternal Western-style diet (mWSD) compared with maternal chow diet (CD) consumption in nonhuman primates produces hepatic injury and steatosis in fetal offspring. Here, we define the role of mWSD and postweaning Western-style diet (pwWSD) exposures on molecular mechanisms linked to NAFLD development in a cohort of 3-year-old juvenile nonhuman primates offspring exposed to maternal CD or mWSD followed by CD or Western-style diet after weaning. We used histologic, transcriptomic, and metabolomic analyses to identify hepatic pathways regulating NAFLD. Offspring exposed to mWSD showed increased hepatic periportal collagen deposition but unchanged hepatic triglyceride levels and body weight. mWSD was associated with a downregulation of gene expression pathways underlying HNF4α activity and protein, and downregulation of antioxidant signaling, mitochondrial biogenesis, and PPAR signaling pathways. In offspring exposed to both mWSD and pwWSD, liver RNA profiles showed upregulation of pathways promoting fibrosis and endoplasmic reticulum stress and increased BiP protein expression with pwWSD. pwWSD increased acylcarnitines and decreased anti-inflammatory fatty acids, which was more pronounced when coupled with mWSD exposure. Further, mWSD shifted liver metabolites towards decreased purine catabolism in favor of synthesis, suggesting a mitochondrial DNA repair response. Our findings demonstrate that 3-year-old offspring exposed to mWSD but weaned to a CD have periportal collagen deposition, with transcriptional and metabolic pathways underlying hepatic oxidative stress, compromised mitochondrial lipid sensing, and decreased antioxidant response. Exposure to pwWSD worsens these phenotypes, triggers endoplasmic reticulum stress, and increases fibrosis. Overall, mWSD exposure is associated with altered expression of candidate genes and metabolites related to NAFLD that persist in juvenile offspring preceding clinical presentation of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Ocidental , Antioxidantes , Fibrose , Fenótipo , Primatas
15.
Cell Rep ; 42(4): 112393, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058409

RESUMO

Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Animais , Feminino , Dieta Ocidental/efeitos adversos , Primatas , Imunidade Inata
16.
J Biol Chem ; 286(35): 30561-30570, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757760

RESUMO

The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.


Assuntos
Histona Desacetilases do Grupo III/química , Mitocôndrias/metabolismo , Sirtuína 1/química , Transativadores/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Núcleo Celular/metabolismo , DNA/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal , Fatores de Tempo , Fatores de Transcrição
17.
J Clin Invest ; 119(2): 323-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19147984

RESUMO

Maternal obesity is thought to increase the offspring's risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and obese mothers chronically consuming a HFD had a 3-fold increase in liver triglycerides (TGs). In addition, fetal offspring from HFD-fed mothers (O-HFD) showed increased evidence of hepatic oxidative stress early in the third trimester, consistent with the development of nonalcoholic fatty liver disease (NAFLD). O-HFD animals also exhibited elevated hepatic expression of gluconeogenic enzymes and transcription factors. Furthermore, fetal glycerol levels were 2-fold higher in O-HFD animals than in control fetal offspring and correlated with maternal levels. The increased fetal hepatic TG levels persisted at P180, concurrent with a 2-fold increase in percent body fat. Importantly, reversing the maternal HFD to a low-fat diet during a subsequent pregnancy improved fetal hepatic TG levels and partially normalized gluconeogenic enzyme expression, without changing maternal body weight. These results suggest that a developing fetus is highly vulnerable to excess lipids, independent of maternal diabetes and/or obesity, and that exposure to this may increase the risk of pediatric NAFLD.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/etiologia , Feto/metabolismo , Fígado/metabolismo , Animais , Citocinas/sangue , Feminino , Desenvolvimento Fetal , Gluconeogênese , Teste de Tolerância a Glucose , Resistência à Insulina , Leptina/sangue , Macaca , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/complicações , Estresse Oxidativo , Gravidez , Triglicerídeos/metabolismo
18.
Biochem J ; 433(3): 505-14, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21044047

RESUMO

Acetylation has recently emerged as an important mechanism for controlling a broad array of proteins mediating cellular adaptation to metabolic fuels. Acetylation is governed, in part, by SIRTs (sirtuins), class III NAD(+)-dependent deacetylases that regulate lipid and glucose metabolism in liver during fasting and aging. However, the role of acetylation or SIRTs in pathogenic hepatic fuel metabolism under nutrient excess is unknown. In the present study, we isolated acetylated proteins from total liver proteome and observed 193 preferentially acetylated proteins in mice fed on an HFD (high-fat diet) compared with controls, including 11 proteins not previously identified in acetylation studies. Exposure to the HFD led to hyperacetylation of proteins involved in gluconeogenesis, mitochondrial oxidative metabolism, methionine metabolism, liver injury and the ER (endoplasmic reticulum) stress response. Livers of mice fed on the HFD had reduced SIRT3 activity, a 3-fold decrease in hepatic NAD(+) levels and increased mitochondrial protein oxidation. In contrast, neither SIRT1 nor histone acetyltransferase activities were altered, implicating SIRT3 as a dominant factor contributing to the observed phenotype. In Sirt3⁻(/)⁻ mice, exposure to the HFD further increased the acetylation status of liver proteins and reduced the activity of respiratory complexes III and IV. This is the first study to identify acetylation patterns in liver proteins of HFD-fed mice. Our results suggest that SIRT3 is an integral regulator of mitochondrial function and its depletion results in hyperacetylation of critical mitochondrial proteins that protect against hepatic lipotoxicity under conditions of nutrient excess.


Assuntos
Metabolismo Energético , Fígado Gorduroso/etiologia , Proteínas Mitocondriais/metabolismo , Sirtuína 3/metabolismo , Acetilação , Animais , Respiração Celular , Dieta , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/análise , Proteômica
19.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34813504

RESUMO

While current thinking posits that insulin signaling to glucose transporter 4 (GLUT4) exocytic translocation and glucose uptake in skeletal muscle and adipocytes is controlled by phosphorylation-based signaling, many proteins in this pathway are acetylated on lysine residues. However, the importance of acetylation and lysine acetyltransferases to insulin-stimulated glucose uptake is incompletely defined. Here, we demonstrate that combined loss of the acetyltransferases E1A binding protein p300 (p300) and cAMP response element binding protein binding protein (CBP) in mouse skeletal muscle caused a complete loss of insulin-stimulated glucose uptake. Similarly, brief (i.e., 1 hour) pharmacological inhibition of p300/CBP acetyltransferase activity recapitulated this phenotype in human and rodent myotubes, 3T3-L1 adipocytes, and mouse muscle. Mechanistically, these effects were due to p300/CBP-mediated regulation of GLUT4 exocytic translocation and occurred downstream of Akt signaling. Taken together, we highlight a fundamental role for acetylation and p300/CBP in the direct regulation of insulin-stimulated glucose transport in skeletal muscle and adipocytes.


Assuntos
Adipócitos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína p300 Associada a E1A/metabolismo , Glucose/metabolismo , Músculo Esquelético , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Feminino , Insulina/metabolismo , Masculino , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo
20.
Front Endocrinol (Lausanne) ; 12: 785242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917036

RESUMO

Intrauterine growth restricted (IUGR) fetuses are born with lower skeletal muscle mass, fewer proliferating myoblasts, and fewer myofibers compared to normally growing fetuses. Plasma concentrations of insulin, a myogenic growth factor, are lower in IUGR fetuses. We hypothesized that a two-week insulin infusion at 75% gestation would increase myoblast proliferation and fiber number in IUGR fetal sheep. Catheterized control fetuses received saline (CON-S, n=6), and the IUGR fetuses received either saline (IUGR-S, n=7) or insulin (IUGR-I, 0.014 ± 0.001 units/kg/hr, n=11) for 14 days. Fetal arterial blood gases and plasma amino acid levels were measured. Fetal skeletal muscles (biceps femoris, BF; and flexor digitorum superficialis, FDS) and pancreases were collected at necropsy (126 ± 2 dGA) for immunochemistry analysis, real-time qPCR, or flow cytometry. Insulin concentrations in IUGR-I and IUGR-S were lower vs. CON-S (P ≤ 0.05, group). Fetal arterial PaO2, O2 content, and glucose concentrations were lower in IUGR-I vs. CON-S (P ≤ 0.01) throughout the infusion period. IGF-1 concentrations tended to be higher in IUGR-I vs. IUGR-S (P=0.06), but both were lower vs. CON-S (P ≤ 0.0001, group). More myoblasts were in S/G2 cell cycle stage in IUGR-I vs. both IUGR-S and CON-S (145% and 113%, respectively, P ≤ 0.01). IUGR-I FDS muscle weighed 40% less and had 40% lower fiber number vs. CON-S (P ≤ 0.05) but were not different from IUGR-S. Myonuclear number per fiber and the mRNA expression levels of muscle regulatory factors were not different between groups. While the pancreatic ß-cell mass was lower in both IUGR-I and IUGR-S compared to CON-S, the IUGR groups were not different from each other indicating that feedback inhibition by endogenous insulin did not reduce ß-cell mass. A two-week insulin infusion at 75% gestation promoted myoblast proliferation in the IUGR fetus but did not increase fiber or myonuclear number. Myoblasts in the IUGR fetus retain the capacity to proliferate in response to mitogenic stimuli, but intrinsic defects in the fetal myoblast by 75% gestation may limit the capacity to restore fiber number.


Assuntos
Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Animais , Esquema de Medicação , Feminino , Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/patologia , Infusões Intravenosas , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/patologia , Mioblastos Esqueléticos/fisiologia , Gravidez , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA