Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 62(4): 1177-1189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157200

RESUMO

Bioimpedance spectroscopy is a tissue classification technique with many clinical applications. Similarly to other data-driven methods, it requires large amounts of data to accurately distinguish similar classes of tissue. Classifiers trained on small datasets typically suffer from over-fitting and lack the ability to generalise to previously unseen data. However, a large in or ex vivo spectral database is difficult to attain. Data collection is usually limited to studies that occur infrequently, and publicly available data is often not available. A solution to this problem is to artificially increase the training dataset by creating modified, yet accurate, copies of the original dataset. The most common techniques in spectral classification are to add noise to copies of the original data, over-sample it, or randomly interpolate pairs of the original data. However, simply perturbing or interpolating the data does not guarantee that the new dataset captures the key features of the original data needed for accurate classification. This study proposes a novel way to augment bioimpedance spectral data. It uses generative adversarial networks (GAN)-a model in which two neural networks (NN) compete with each other: while one NN artificially manufactures data that could be mistaken for real data, the role of the second NN is to identify which data it receives has been artificially created. The first NN then interactively adapts its output until the second NN can no longer flag artificially created data. The result is a new dataset that truly represents the features of the original data. In this study, three GAN architectures are used, i.e., the vanilla GAN, the deep convolutional GAN, and the Wasserstein GAN. Then, the generated data is used to train five classification methods, and their results are compared to a baseline that only uses the original data. The results from a dataset of 13 different tissue classes show that the deep convolutional GAN is most statistically similar to the original data and improves classification accuracy by 15% when compared to the same model trained only on the original data. The Wasserstein-GAN architecture also provides significant improvements of up to 24% better accuracy.


Assuntos
Redes Neurais de Computação , Coleta de Dados , Bases de Dados Factuais
2.
Front Big Data ; 4: 612561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748752

RESUMO

The sustained increase in new cases of COVID-19 across the world and potential for subsequent outbreaks call for new tools to assist health professionals with early diagnosis and patient monitoring. Growing evidence around the world is showing that lung ultrasound examination can detect manifestations of COVID-19 infection. Ultrasound imaging has several characteristics that make it ideally suited for routine use: small hand-held systems can be contained inside a protective sheath, making it easier to disinfect than X-ray or computed tomography equipment; lung ultrasound allows triage of patients in long term care homes, tents or other areas outside of the hospital where other imaging modalities are not available; and it can determine lung involvement during the early phases of the disease and monitor affected patients at bedside on a daily basis. However, some challenges still remain with routine use of lung ultrasound. Namely, current examination practices and image interpretation are quite challenging, especially for unspecialized personnel. This paper reviews how lung ultrasound (LUS) imaging can be used for COVID-19 diagnosis and explores different image processing methods that have the potential to detect manifestations of COVID-19 in LUS images. Then, the paper reviews how general lung ultrasound examinations are performed before addressing how COVID-19 manifests itself in the images. This will provide the basis to study contemporary methods for both segmentation and classification of lung ultrasound images. The paper concludes with a discussion regarding practical considerations of lung ultrasound image processing use and draws parallels between different methods to allow researchers to decide which particular method may be best considering their needs. With the deficit of trained sonographers who are working to diagnose the thousands of people afflicted by COVID-19, a partially or totally automated lung ultrasound detection and diagnosis tool would be a major asset to fight the pandemic at the front lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA