Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Infect Dis ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271564

RESUMO

BACKGROUND: Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS: We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct ELISA, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS: We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In five genetically-related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsono-phagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS: Loss of function in wcaJ led to increased complement resistance, complement binding, and opsono-phagocytosis, which may promote KPC-Kp persistence by enabling co-existence of increased bloodstream fitness and reduced tissue virulence.

2.
Antimicrob Agents Chemother ; 68(3): e0125823, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289078

RESUMO

The activity of a novel ß-lactamase inhibitor combination, sulbactam-durlobactam (SUL-DUR), was tested against 87 colistin-resistant and/or cefiderocol-non-susceptible carbapenem-resistant Acinetobacter baumannii clinical isolates collected from U.S. hospitals between 2017 and 2019. Among them, 89% and 97% were susceptible to SUL-DUR and imipenem plus SUL-DUR, with MIC50/MIC90 values of 2 µg/mL/8 µg/mL and 1 µg/mL/4 µg/mL, respectively. The presence of amino acid substitutions in penicillin-binding protein 3, including previously reported A515V or T526S, was associated with SUL-DUR non-susceptibility.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Compostos Azabicíclicos , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Cefiderocol , Infecções por Acinetobacter/tratamento farmacológico , Sulbactam/farmacologia , Imipenem/farmacologia , Hospitais , Testes de Sensibilidade Microbiana , Combinação de Medicamentos
3.
Antimicrob Agents Chemother ; 67(7): e0003023, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37310284

RESUMO

The emergence of carbapenem-resistant, hypervirulent Klebsiella pneumoniae is a new threat to health care. We studied the molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae isolates in Qatar using whole-genome sequence data. We also characterized the prevalence and genetic basis of hypervirulent phenotypes and established the virulence potential using a Galleria mellonella model. Of 100 Klebsiella isolates studied, NDM and OXA-48 were the most common carbapenemases. Core genome single-nucleotide polymorphism (SNP) analysis indicated the presence of diverse sequence types and clonal lineages; isolates belonging to Klebsiella quasipneumoniae subsp. quasipneumoniae sequence type 196 (ST196) and ST1416 may be disseminated among several health care centers. Ten K. pneumoniae isolates carried rmpA and/or truncated rmpA2, and 2 isolates belonged to KL2, indicating low prevalence of classical hypervirulent isolates. Isolates carrying both carbapenem resistance and hypervirulence genes were confined mainly to ST231 and ST383 isolates. One ST383 isolate was further investigated by MinION sequencing, and the assembled genome indicated that blaNDM was located on an IncHI1B-type plasmid (pFQ61_ST383_NDM-5) which coharbored several virulence factors, including the regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD and iutA), likely resulting from recombination events. Comparative genomics indicated that this hybrid plasmid may be present in two additional Qatari ST383 isolates. Carbapenem-resistant, hypervirulent K. pneumoniae ST383 isolates pose an emerging threat to global health due to their simultaneous hypervirulence and multidrug resistance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Carbapenêmicos/farmacologia , Catar/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella , beta-Lactamases/genética , Plasmídeos/genética , Genômica , Antibacterianos/farmacologia
4.
J Antimicrob Chemother ; 78(10): 2442-2450, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37574665

RESUMO

OBJECTIVES: To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate. METHODS: A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of >256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY ß-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance. RESULTS: WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY ß-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam. CONCLUSIONS: We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance.


Assuntos
Ceftazidima , Escherichia coli , Humanos , Ceftazidima/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , Plasmídeos/genética , Testes de Sensibilidade Microbiana
5.
BMC Infect Dis ; 23(1): 596, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700242

RESUMO

Acute otitis media (AOM) is the most common childhood bacterial infectious disease requiring antimicrobial therapy. Most cases of AOM are caused by translocation of Streptococcus pneumoniae or Haemophilus influenzae from the nasopharynx to the middle ear during an upper respiratory tract infection (URI). Ongoing genomic surveillance of these pathogens is important for vaccine design and tracking of emerging variants, as well as for monitoring patterns of antibiotic resistance to inform treatment strategies and stewardship.In this work, we examined the ability of a genomics-based workflow to determine microbiological and clinically relevant information from cultured bacterial isolates obtained from patients with AOM or an URI. We performed whole genome sequencing (WGS) and analysis of 148 bacterial isolates cultured from the nasopharynx (N = 124, 94 AOM and 30 URI) and ear (N = 24, all AOM) of 101 children aged 6-35 months presenting with AOM or an URI. We then performed WGS-based sequence typing and antimicrobial resistance profiling of each strain and compared results to those obtained from traditional microbiological phenotyping.WGS of clinical isolates resulted in 71 S. pneumoniae genomes and 76 H. influenzae genomes. Multilocus sequencing typing (MSLT) identified 33 sequence types for S. pneumoniae and 19 predicted serotypes including the most frequent serotypes 35B and 3. Genome analysis predicted 30% of S. pneumoniae isolates to have complete or intermediate penicillin resistance. AMR predictions for S. pneumoniae isolates had strong agreement with clinical susceptibility testing results for beta-lactam and non beta-lactam antibiotics, with a mean sensitivity of 93% (86-100%) and a mean specificity of 98% (94-100%). MLST identified 29 H. influenzae sequence types. Genome analysis identified beta-lactamase genes in 30% of H. influenzae strains, which was 100% in agreement with clinical beta-lactamase testing. We also identified a divergent highly antibiotic-resistant strain of S. pneumoniae, and found its closest sequenced strains, also isolated from nasopharyngeal samples from over 15 years ago.Ultimately, our work provides the groundwork for clinical WGS-based workflows to aid in detection and analysis of H. influenzae and S. pneumoniae isolates.


Assuntos
Influenza Humana , Otite Média , Infecções Respiratórias , Criança , Humanos , Streptococcus pneumoniae/genética , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana/genética , Genômica , Haemophilus influenzae/genética , Penicilinas
6.
Antimicrob Agents Chemother ; 65(7): e0015021, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972237

RESUMO

KPC-82 is a KPC-2 variant identified in a carbapenem-nonsusceptible Citrobacter koseri that confers high-level resistance to ceftazidime-avibactam. Genomic analysis revealed that blaKPC-82 is carried by a chromosomally integrated Tn4401 transposon (disrupting porin gene phoE) and evolved by a 6-nucleotide tandem repeat duplication causing a two-amino-acid insertion (Ser-Asp) within the Ala267-Ser275 loop. Similar to related KPC variants, KPC-82 showed decreased carbapenemase activity when expressed in a heterologous background and remained susceptible to carbapenem/ß-lactamase inhibitor combinations.


Assuntos
Carbapenêmicos , Citrobacter koseri , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
7.
Eur J Clin Microbiol Infect Dis ; 40(8): 1779-1785, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33616788

RESUMO

One hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-ß-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Catar/epidemiologia , Adulto Jovem
8.
Clin Infect Dis ; 71(10): 2713-2716, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32236408

RESUMO

We report 2 independent patients from whom carbapenem and ceftazidime-avibactam-resistant Enterobacter cloacae complex strains were identified. The ceftazidime-avibactam resistance was attributed to a 2-amino acid deletion in the R2 loop of AmpC ß-lactamase, which concurrently caused resistance to cefepime and reduced susceptibility to cefiderocol, a novel siderophore cephalosporin.


Assuntos
Cefalosporinas , Enterobacter cloacae , Antibacterianos/farmacologia , Compostos Azabicíclicos , Proteínas de Bactérias/genética , Cefepima , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Combinação de Medicamentos , Enterobacter cloacae/genética , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Cefiderocol
9.
Emerg Infect Dis ; 26(11): 2746-2750, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079055

RESUMO

We describe an outbreak caused by Serratia marcescens carrying blaKPC-3 that was sourced to a long-term care facility in Florida, USA. Whole-genome sequencing and plasmid profiling showed involvement of 3 clonal lineages of S. marcescens and 2 blaKPC-3-carrying plasmids. Determining the resistance mechanism is critical for timely implementation of infection control measures.


Assuntos
Surtos de Doenças , Infecções por Serratia/epidemiologia , Serratia marcescens , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Feminino , Florida/epidemiologia , Humanos , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Casas de Saúde , Plasmídeos/genética , Serratia marcescens/genética , Adulto Jovem , beta-Lactamases/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-32284381

RESUMO

Ceftazidime-avibactam and cefiderocol are two of the latest generation ß-lactam agents that possess expanded activity against highly drug-resistant bacteria, including carbapenem-resistant Enterobacterales Here, we show that structural changes in AmpC ß-lactamases can confer reduced susceptibility to both agents. A multidrug-resistant Enterobacter cloacae clinical strain (Ent385) was found to be resistant to ceftazidime-avibactam and cefiderocol without prior exposure to either agent. The AmpC ß-lactamase of Ent385 (AmpCEnt385) contained an alanine-proline deletion at positions 294 and 295 (A294_P295del) in the R2 loop. AmpCEnt385 conferred reduced susceptibility to ceftazidime-avibactam and cefiderocol when cloned into Escherichia coli TOP10. Purified AmpCEnt385 showed increased hydrolysis of ceftazidime and cefiderocol compared to AmpCEnt385Rev, in which the deletion was reverted. Comparisons of crystal structures of AmpCEnt385 and AmpCP99, the canonical AmpC of E. cloacae complex, revealed that the two-residue deletion in AmpCEnt385 induced drastic structural changes of the H-9 and H-10 helices and the R2 loop, which accounted for the increased hydrolysis of ceftazidime and cefiderocol. The potential for a single mutation in ampC to confer reduced susceptibility to both ceftazidime-avibactam and cefiderocol requires close monitoring.


Assuntos
Ceftazidima , Enterobacter cloacae , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinas , Combinação de Medicamentos , Enterobacter cloacae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Cefiderocol
11.
J Clin Microbiol ; 58(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32554477

RESUMO

Carbapenem-nonsusceptible Citrobacter spp. (CNSC) are increasingly recognized as health care-associated pathogens. Information regarding their clinical epidemiology, genetic diversity, and mechanisms of carbapenem resistance is lacking. We examined microbiology records of adult patients at the University of Pittsburgh Medical Center (UMPC) Presbyterian Hospital (PUH) from 2000 to 2018 for CNSC, as defined by ertapenem nonsusceptibility. Over this time frame, the proportion of CNSC increased from 4% to 10% (P = 0.03), as did daily defined carbapenem doses/1,000 patient days (6.52 to 34.5; R2 = 0.831; P < 0.001), which correlated with the observed increase in CNSC (lag = 0 years; R2 = 0.660). Twenty CNSC isolates from 19 patients at PUH and other UPMC hospitals were available for further analysis, including whole-genome short-read sequencing and additional antimicrobial susceptibility testing. Of the 19 patients, nearly all acquired CNSC in the health care setting and over half had polymicrobial cultures containing at least one other organism. Among the 20 CNSC isolates, Citrobacter freundii was the predominant species identified (60%). CNSC genomes were compared with genomes of carbapenem-susceptible Citrobacter spp. from UPMC and with other publicly available CNSC genomes. Isolates carrying genes encoding carbapenemases (blaKPC-2,blaKPC-3, and blaNDM-1) were also long-read sequenced, and their carbapenemase-encoding plasmid sequences were compared with one another and with publicly available sequences. Phylogenetic analysis of 102 UPMC Citrobacter genomes showed that CNSC from our setting did not cluster together. Similarly, a global phylogeny of 64 CNSC genomes showed a diverse population structure. Our findings suggest that both local and global CNSC populations are genetically diverse and that CNSC harbor carbapenemase-encoding plasmids found in other Enterobacterales.


Assuntos
Carbapenêmicos , Infecções por Enterobacteriaceae , Adulto , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Citrobacter/genética , Atenção à Saúde , Infecções por Enterobacteriaceae/epidemiologia , Genômica , Humanos , Filogenia , beta-Lactamases/genética
12.
Pediatr Nephrol ; 35(2): 321-329, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31758242

RESUMO

BACKGROUND: The specificity of the leukocyte esterase test (87%) is suboptimal. The objective of this study was to identify more specific screening tests that could reduce the number of children who unnecessarily receive antimicrobials to treat a presumed urinary tract infection (UTI). METHODS: Prospective cross-sectional study to compare inflammatory proteins in blood and urine samples collected at the time of a presumptive diagnosis of UTI. We also evaluated serum RNA expression in a subset. RESULTS: We enrolled 200 children; of these, 89 were later demonstrated not to have a UTI based on the results of the urine culture obtained. Urinary proteins that best discriminated between children with UTI and no UTI were involved in T cell response proliferation (IL-9, IL-2), chemoattractants (CXCL12, CXCL1, CXCL8), the cytokine/interferon pathway (IL-13, IL-2, INFγ), or involved in innate immunity (NGAL). The predictive power (as measured by the area under the curve) of a combination of four urinary markers (IL-2, IL-9, IL-8, and NGAL) was 0.94. Genes in the pathways related to inflammation were also upregulated in serum of children with UTI. CONCLUSIONS: Urinary proteins involved in the inflammatory response may be useful in identifying children with false positive results with current screening tests for UTI; this may reduce unnecessary treatment.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Infecções Urinárias/sangue , Infecções Urinárias/diagnóstico , Infecções Urinárias/urina , Criança , Pré-Escolar , Reações Falso-Positivas , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Sensibilidade e Especificidade , Urinálise
13.
Artigo em Inglês | MEDLINE | ID: mdl-31636064

RESUMO

OXA-232 is an OXA-48-group class D ß-lactamase that hydrolyzes expanded-spectrum cephalosporins and carbapenems at low levels. Clinical strains producing OXA-232 are sometimes susceptible to carbapenems, making it difficult to identify them in the clinical microbiology laboratory. We describe the development of carbapenem resistance in sequential clinical isolates of Raoultella ornithinolytica carrying blaOXA-232 in a hospitalized patient, where the ertapenem MIC increased from 0.5 µg/ml to 512 µg/ml and the meropenem MIC increased from 0.125 µg/ml to 32 µg/ml during the course of ertapenem therapy. Whole-genome sequencing (WGS) analysis identified loss-of-function mutations in ompC and ompF in carbapenem-resistant isolates that were not present in the initial carbapenem-susceptible isolate. Complementation of a carbapenem-resistant isolate with an intact ompF gene resulted in 16- to 32-fold reductions in carbapenem MICs, whereas complementation with intact ompC resulted in a 2-fold reduction in carbapenem MICs. Additionally, blaOXA-232 expression increased 2.9-fold in a carbapenem-resistant isolate. Rapid development of high-level carbapenem resistance in initially carbapenem-susceptible OXA-232-producing R. ornithinolytica under selective pressure from carbapenem therapy highlights the diagnostic challenges in detecting Enterobacteriaceae strains producing this inefficient carbapenemase.


Assuntos
Proteínas de Bactérias/biossíntese , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Carbapenêmicos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Ertapenem/farmacologia , Resistência beta-Lactâmica , beta-Lactamases/biossíntese , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Genes Bacterianos , Humanos , Masculino , Mutação , Porinas/genética , Sequenciamento Completo do Genoma , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-30642934

RESUMO

The spread of multidrug or extensively drug-resistant Gram-negative bacteria is a serious public health issue. There are too few new antibiotics in development to combat the threat of multidrug-resistant infections, and consequently the rate of increasing antibiotic resistance is outpacing the drug development process. This fundamentally threatens our ability to treat common infectious diseases. Fosfomycin (FOM) has an established track record of safety in humans and is highly active against Escherichia coli, including multidrug-resistant strains. However, many other Gram-negative pathogens, including the "priority pathogens" Klebsiella pneumoniae and Pseudomonas aeruginosa, are inherently resistant to FOM due to the chromosomal fosA gene, which directs expression of a metal-dependent glutathione S-transferase (FosA) that metabolizes FOM. In this study, we describe the discovery and biochemical and structural characterization of ANY1 (3-bromo-6-[3-(3-bromo-2-oxo-1H-pyrazolo[1,5-a]pyrimidin-6-yl)-4-nitro-1H-pyrazol-5-yl]-1H-pyrazolo[1,5-a]pyrimidin-2-one), a small-molecule active-site inhibitor of FosA. Importantly, ANY1 potentiates FOM activity in representative Gram-negative pathogens. Collectively, our study outlines a new strategy to expand FOM activity to a broader spectrum of Gram-negative pathogens, including multidrug-resistant strains.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Fosfomicina/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Farmacorresistência Bacteriana/fisiologia , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana
15.
J Clin Microbiol ; 57(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567747

RESUMO

Acinetobacter baumannii is a prevalent nosocomial pathogen with a high incidence of multidrug resistance. Treatment of infections due to this organism with colistin, a last-resort antibiotic of the polymyxin class, can result in the emergence of colistin-resistant strains. Colistin resistance primarily occurs via modifications of the terminal phosphate moieties of lipopolysaccharide-derived lipid A, which reduces overall membrane electronegativity. These modifications are readily identified by mass spectrometry (MS). In this study, we prospectively collected Acinetobacter baumannii complex clinical isolates from a hospital system in Pennsylvania over a 3-year period. All isolates were evaluated for colistin resistance using standard MIC testing by both agar dilution and broth microdilution, as well as genospecies identification and lipid A profiling using MS analyses. Overall, an excellent correlation between colistin susceptibility and resistance, determined by MIC testing, and the presence of a lipid A modification, determined by MS, was observed with a sensitivity of 92.9% and a specificity of 94.0%. Additionally, glycolipid profiling was able to differentiate A. baumannii complex organisms based on their membrane lipids. With the growth of MS use in clinical laboratories, a reliable MS-based glycolipid phenotyping method that identifies colistin resistance in A. baumannii complex clinical isolates, as well as other Gram-negative organisms, represents an alternative or complementary approach to existing diagnostics.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Membrana Celular/química , Colistina/farmacologia , Glicolipídeos/química , Espectrometria de Massas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Estudos Prospectivos
16.
J Antimicrob Chemother ; 74(8): 2203-2208, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127290

RESUMO

BACKGROUND: OXA-2 is a class D ß-lactamase that confers resistance to penicillins, as well as narrow-spectrum cephalosporins. OXA-2 was recently reported to also possess carbapenem-hydrolysing activity. Here, we describe a KPC-2-encoding Klebsiella pneumoniae isolate that demonstrated reduced susceptibility to ceftazidime and ertapenem due to production of OXA-2. OBJECTIVES: To elucidate the role of OXA-2 production in reduced ceftazidime and ertapenem susceptibility in a K. pneumoniae ST258 clinical isolate. METHODS: MICs were determined by the agar dilution method. WGS was conducted to identify and compare resistance genes between isolates. Expression of KPC-2 was quantified by quantitative RT-PCR and immunoblotting. OXA-2 was expressed in Escherichia coli TOP10, as well as in K. pneumoniae ATCC 13883, to define the relative contribution of OXA-2 in ß-lactam resistance. Kinetic studies were conducted using purified OXA-2 enzyme. RESULTS: K. pneumoniae 1761 belonged to ST258 and carried both blaKPC-2 and blaOXA-2. However, expression of blaKPC-2 was substantially reduced due to an IS1294 insertion in the promoter region. K. pneumoniae 1761, K. pneumoniae ATCC 13883 and E. coli TOP10 carrying blaOXA-2-harbouring plasmids showed reduced susceptibility to ertapenem and ceftazidime, but meropenem, imipenem and cefepime were unaffected. blaOXA-2 was carried on a 2910 bp partial class 1 integron containing aacA4-blaOXA-2-qacEΔ1-sul1 on an IncA/C2 plasmid, which was not present in the earlier ST258 isolates possessing blaKPC-2 with intact promoters. Hydrolysis of ertapenem by OXA-2 was confirmed using purified enzyme. CONCLUSIONS: Production of OXA-2 was associated with reduced ceftazidime and ertapenem susceptibility in a K. pneumoniae ST258 isolate.


Assuntos
Antibacterianos/farmacologia , Ceftazidima/farmacologia , Ertapenem/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Farmacorresistência Bacteriana/genética , Humanos , Cinética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana
17.
J Pediatr ; 209: 146-153.e1, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30905425

RESUMO

OBJECTIVE: To determine whether treatment for urinary tract infections in children could be individualized using biomarkers for acute pyelonephritis. STUDY DESIGN: We enrolled 61 children with febrile urinary tract infections, collected blood and urine samples, and performed a renal scan within 2 weeks of diagnosis to identify those with pyelonephritis. Renal scans were interpreted centrally by 2 experts. We measured inflammatory proteins in blood and urine using LUMINEX or an enzyme-linked immunosorbent assay. We evaluated serum RNA expression using RNA sequencing in a subset of children. Finally, for children with Escherichia coli isolated from urine cultures, we performed a polymerase chain reaction for 4 previously identified virulence genes. RESULTS: Urinary markers that best differentiated pyelonephritis from cystitis included chemokine (C-X-C motif) ligand (CXCL)1, CXCL9, CXCL12, C-C motif chemokine ligand 2, INF γ, and IL-15. Serum procalcitonin was the best serum marker for pyelonephritis. Genes in the interferon-γ pathway were upregulated in serum of children with pyelonephritis. The presence of E coli virulence genes did not correlate with pyelonephritis. CONCLUSIONS: Immune response to pyelonephritis and cystitis differs quantitatively and qualitatively; this may be useful in differentiating these 2 conditions.


Assuntos
Infecções Bacterianas , Cistite/microbiologia , Pielonefrite/microbiologia , Infecções Urinárias , Doença Aguda , Infecções Bacterianas/sangue , Infecções Bacterianas/urina , Biomarcadores/análise , Pré-Escolar , Cistite/sangue , Cistite/diagnóstico , Cistite/urina , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Masculino , Projetos Piloto , Estudos Prospectivos , Pielonefrite/sangue , Pielonefrite/induzido quimicamente , Pielonefrite/urina , Infecções Urinárias/sangue , Infecções Urinárias/urina
18.
J Clin Microbiol ; 56(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093108

RESUMO

Fosfomycin maintains activity against most Escherichia coli clinical isolates, but the growth of E. coli colonies within the zone of inhibition around the fosfomycin disk is occasionally observed upon susceptibility testing. We aimed to estimate the frequency of such nonsusceptible inner colony mutants and identify the underlying resistance mechanisms. Disk diffusion testing of fosfomycin was performed on 649 multidrug-resistant E. coli clinical isolates collected between 2011 and 2015. For those producing inner colonies inside the susceptible range, the parental strains and their representative inner colony mutants were subjected to MIC testing, whole-genome sequencing, reverse transcription-quantitative PCR (qRT-PCR), and carbohydrate utilization studies. Of the 649 E. coli clinical isolates, 5 (0.8%) consistently produced nonsusceptible inner colonies. Whole-genome sequencing revealed the deletion of uhpT encoding hexose-6-phosphate antiporter in 4 of the E. coli inner colony mutants, while the remaining mutant contained a nonsense mutation in uhpA The expression of uhpT was absent in the mutant strains with uhpT deletion and was not inducible in the strain with the uhpA mutation, unlike in its parental strain. All 5 inner colony mutants had reduced growth on minimal medium supplemented with glucose-6-phosphate. In conclusion, fosfomycin-nonsusceptible inner colony mutants can occur due to the loss of function or induction of UhpT but are rare among multidrug-resistant E. coli clinical strains. Considering that these mutants carry high biological costs, we suggest that fosfomycin susceptibility of strains that generate inner colony mutants can be interpreted on the basis of the zone of inhibition without accounting for the inner colonies.


Assuntos
Antibacterianos/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Fosfomicina/farmacologia , Metabolismo dos Carboidratos , Meios de Cultura/química , Proteínas de Ligação a DNA/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/farmacologia , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Taxa de Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional
19.
J Antimicrob Chemother ; 73(11): 2952-2959, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124845

RESUMO

Background: Acinetobacter baumannii is a healthcare-associated pathogen with high rates of carbapenem resistance. Colistin is now routinely used for treatment of infections by this pathogen. However, colistin use has been associated with development of resistance to this agent. Objectives: To elucidate the phylogenomics of colistin-susceptible and -resistant A. baumannii strain pairs from a cohort of hospitalized patients at a tertiary medical centre in the USA. Methods: WGS data from 21 pairs of colistin-susceptible and -resistant, XDR clinical strains were obtained and compared using phylogeny of aligned genome sequences, assessment of pairwise SNP differences and gene content. Results: Fourteen patients had colistin-resistant strains that were highly genetically related to their own original susceptible strain with a median pairwise SNP distance of 5.5 (range 1-40 SNPs), while seven other strain pairs were divergent with ≥84 SNP differences. In addition, several strains from different patients formed distinct clusters on the phylogeny in keeping with closely linked transmission chains. The majority of colistin-resistant strains contained non-synonymous mutations within the pmrAB locus suggesting a central role for pmrAB mutations in colistin resistance. Excellent genotype-phenotype correlation was also observed for carbapenems, aminoglycosides and tetracyclines. Conclusions: The findings suggest that colistin resistance in the clinical setting arises through both in vivo evolution from colistin-susceptible strains and reinfection by unrelated colistin-resistant strains, the latter of which may involve patient-to-patient transmission.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Acinetobacter/microbiologia , Carbapenêmicos/farmacologia , Estudos de Coortes , Genômica , Hospitalização/estatística & dados numéricos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Centros de Atenção Terciária/estatística & dados numéricos , Estados Unidos , Sequenciamento Completo do Genoma , beta-Lactamases/genética
20.
Emerg Infect Dis ; 23(11): 1902-1904, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29048285

RESUMO

Of 890 vancomycin-resistant Enterococcus faecium isolates obtained by rectal screening from patients in Pittsburgh, Pennsylvania, USA, 4 had MICs >1,024 µg/mL for fosfomycin. These isolates had a Cys119Asp substitution in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase. This substitution increased the fosfomycin MIC >4-fold and rendered this drug inactive in biochemical assays.


Assuntos
Alquil e Aril Transferases/genética , Antibacterianos/farmacologia , Enterococcus faecium/enzimologia , Fosfomicina/farmacologia , Infecções por Bactérias Gram-Positivas/microbiologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Pennsylvania , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA