Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chem Res Toxicol ; 37(4): 643-657, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556765

RESUMO

Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 µM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.


Assuntos
Reativadores da Colinesterase , Indolquinonas , Intoxicação por Organofosfatos , Soman , Humanos , Idoso , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo , Serina , Oximas , Reativadores da Colinesterase/química
2.
Chem Res Toxicol ; 36(9): 1451-1455, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37650603

RESUMO

CYP2C19 is an important enzyme for organophosphate pesticide (OPP) metabolism. Because the OPPs can be both substrates and inhibitors of CYP2C19, we screened 45 OPPs for their ability to inhibit the activity of this enzyme and investigated the role of CYP2C19 in the metabolism of 22 of these molecules. We identified several nanomolar inhibitors of CYP2C19 as well as determined that thions, in general, are more potent inhibitors than oxons. We also determined that thions are readily metabolized by CYP2C19, although we saw no relationship between IC50 values and intrinsic clearance rates. This study may have implications for mitigating the risk of OPP poisoning.


Assuntos
Organofosfatos , Praguicidas , Humanos , Citocromo P-450 CYP2C19 , Praguicidas/toxicidade
3.
Brain ; 145(7): 2378-2393, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905466

RESUMO

Stroke causes devastating sensory-motor deficits and long-term disability due to disruption of descending motor pathways. Restoration of these functions enables independent living and therefore represents a high priority for those afflicted by stroke. Here, we report that daily administration of gabapentin, a clinically approved drug already used to treat various neurological disorders, promotes structural and functional plasticity of the corticospinal pathway after photothrombotic cortical stroke in adult mice. We found that gabapentin administration had no effects on vascular occlusion, haemodynamic changes nor survival of corticospinal neurons within the ipsilateral sensory-motor cortex in the acute stages of stroke. Instead, using a combination of tract tracing, electrical stimulation and functional connectivity mapping, we demonstrated that corticospinal axons originating from the contralateral side of the brain in mice administered gabapentin extend numerous collaterals, form new synaptic contacts and better integrate within spinal circuits that control forelimb muscles. Not only does gabapentin daily administration promote neuroplasticity, but it also dampens maladaptive plasticity by reducing the excitability of spinal motor circuitry. In turn, mice administered gabapentin starting 1 h or 1 day after stroke recovered skilled upper extremity function. Functional recovery persists even after stopping the treatment at 6 weeks following a stroke. Finally, chemogenetic silencing of cortical projections originating from the contralateral side of the brain transiently abrogated recovery in mice administered gabapentin, further supporting the conclusion that gabapentin-dependent reorganization of spared cortical pathways drives functional recovery after stroke. These observations highlight the strong potential for repurposing gabapentinoids as a promising treatment strategy for stroke repair.


Assuntos
Acidente Vascular Cerebral , Animais , Axônios/fisiologia , Gabapentina , Camundongos , Plasticidade Neuronal/fisiologia , Tratos Piramidais , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico
4.
J Am Coll Nutr ; 39(4): 290-300, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330107

RESUMO

Background: Acute ingestion of ketone supplements alters metabolism and potentially exercise performance. No studies to date have evaluated the impact of co-ingestion of ketone salts with caffeine and amino acids on high intensity exercise performance, and no data exists in Keto-Adapted individuals.Methods: We tested the performance and metabolic effects of a pre-workout supplement containing beta-hydroxybutyrate (BHB) salts, caffeine, and amino acids (KCA) in recreationally-active adults habitually consuming a mixed diet (Keto-Naïve; n = 12) or a ketogenic diet (Keto-Adapted; n = 12). In a randomized and balanced manner, subjects consumed either the KCA consisting of ∼7 g BHB (72% R-BHB and 28% S-BHB) with ∼100 mg of caffeine, and amino acids (leucine and taurine) or Water (control condition) 15 minutes prior to performing a staged cycle ergometer time to exhaustion test followed immediately by a 30 second Wingate test.Results: Circulating total BHB concentrations increased rapidly after KCA ingestion in KN (154 to 732 µM) and KA (848 to 1,973 µM) subjects and stayed elevated throughout recovery in both groups. Plasma S-BHB increased >20-fold 15 minutes after KCA ingestion in both groups and remained elevated throughout recovery. Compared to Water, KCA ingestion increased time to exhaustion 8.3% in Keto-Naïve and 9.8% in Keto-Adapted subjects (P < 0.001). There was no difference in power output during the Wingate test between trials. Peak lactate immediately after exercise was higher after KCA (∼14.9 vs 12.7 mM).Conclusion: These results indicate that pre-exercise ingestion of a moderate dose of R- and S-BHB salts combined with caffeine, leucine and taurine improves high-intensity exercise performance to a similar extent in both Keto-Adapted and Keto-Naïve individuals.


Assuntos
Ácido 3-Hidroxibutírico/administração & dosagem , Aminoácidos/administração & dosagem , Ciclismo/fisiologia , Cafeína/administração & dosagem , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Esportiva , Ácido 3-Hidroxibutírico/sangue , Adaptação Fisiológica , Adolescente , Adulto , Estudos Cross-Over , Dieta Cetogênica , Ingestão de Alimentos/fisiologia , Teste de Esforço , Feminino , Humanos , Ácido Láctico/sangue , Masculino , Pessoa de Meia-Idade , Resistência Física/efeitos dos fármacos , Sais/farmacologia , Adulto Jovem
5.
Bioorg Med Chem Lett ; 30(1): 126725, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732409

RESUMO

Cyanine compounds have previously shown excellent in vitro and promising in vivo antileishmanial efficacy, but the potential toxicity of these agents is a concern. A series of 22 analogs of thiazole orange ((Z)-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium salt), a commercial cyanine dye with antileishmanial activity, were synthesized in an effort to increase the selectivity of such compounds while maintaining efficacy. Cyanines possessing substitutions on the quinolinium ring system displayed potency against Leishmania donovani axenic amastigotes that differed little from the parent compound (IC50 12-42 nM), while ring disjunction analogs were both less potent and less toxic. Changes in DNA melting temperature were modest when synthetic oligonucleotides were incubated with selected analogs (ΔTm ≤ 5 °C), with ring disjunction analogs showing the least effect on this parameter. Despite the high antileishmanial potency of the target compounds, their toxicity and relatively flat SAR suggests that further information regarding the target(s) of these molecules is needed to aid their development as antileishmanials.


Assuntos
Benzotiazóis/síntese química , Leishmaniose Visceral/metabolismo , Quinolinas/síntese química , Animais , Descoberta de Drogas
6.
J Enzyme Inhib Med Chem ; 35(1): 1387-1402, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32633155

RESUMO

Aza-peptide aldehydes and ketones are a new class of reversible protease inhibitors that are specific for the proteasome and clan CD cysteine proteases. We designed and synthesised aza-Leu derivatives that were specific for the chymotrypsin-like active site of the proteasome, aza-Asp derivatives that were effective inhibitors of caspases-3 and -6, and aza-Asn derivatives that inhibited S. mansoni and I. ricinus legumains. The crystal structure of caspase-3 in complex with our caspase-specific aza-peptide methyl ketone inhibitor with an aza-Asp residue at P1 revealed a covalent linkage between the inhibitor carbonyl carbon and the active site cysteinyl sulphur. Aza-peptide aldehydes and ketones showed no cross-reactivity towards cathepsin B or chymotrypsin. The initial in vitro selectivity of these inhibitors makes them suitable candidates for further development into therapeutic agents to potentially treat multiple myeloma, neurodegenerative diseases, and parasitic infections.


Assuntos
Aldeídos/farmacologia , Compostos Aza/farmacologia , Desenho de Fármacos , Cetonas/farmacologia , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Aldeídos/química , Animais , Compostos Aza/química , Bovinos , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cetonas/química , Modelos Moleculares , Estrutura Molecular , Peptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 111(9): 3442-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550461

RESUMO

The control of tryptophan production in Bacillus is a paradigmatic example of gene regulation involving the interplay of multiple protein and nucleic acid components. Central to this combinatorial mechanism are the homo-oligomeric proteins TRAP (trp RNA-binding attenuation protein) and anti-TRAP (AT). TRAP forms undecameric rings, and AT assembles into triskelion-shaped trimers. Upon activation by tryptophan, the outer circumference of the TRAP ring binds specifically to a series of tandem sequences present in the 5' UTR of RNA transcripts encoding several tryptophan metabolism genes, leading to their silencing. AT, whose expression is up-regulated upon tryptophan depletion to concentrations not exceeding a ratio of one AT trimer per TRAP 11-mer, restores tryptophan production by binding activated TRAP and preventing RNA binding. How the smaller AT inhibitor prevents RNA binding at such low stoichiometries has remained a puzzle, in part because of the large RNA-binding surface on the tryptophan-activated TRAP ring and its high affinity for RNA. Using X-ray scattering, hydrodynamic, and mass spectrometric data, we show that the polydentate action of AT trimers can condense multiple intact TRAP rings into large heterocomplexes, effectively reducing the available contiguous RNA-binding surfaces. This finding reveals an unprecedented mechanism for substoichiometric inhibition of a gene-regulatory protein, which may be a widespread but underappreciated regulatory mechanism in pathways that involve homo-oligomeric or polyvalent components.


Assuntos
Bacillus/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Complexos Multiproteicos/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Bacillus/genética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espalhamento a Baixo Ângulo
8.
Proc Natl Acad Sci U S A ; 109(7): 2503-8, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308406

RESUMO

We report here an unliganded receptor structure in the common gamma-chain (γ(c)) family of receptors and cytokines. The crystal structure of the unliganded form of the interleukin-7 alpha receptor (IL-7Rα) extracellular domain (ECD) at 2.15 Å resolution reveals a homodimer forming an "X" geometry looking down onto the cell surface with the C termini of the two chains separated by 110 Å and the dimer interface comprising residues critical for IL-7 binding. Further biophysical studies indicate a weak association of the IL-7Rα ECDs but a stronger association between the γ(c)/IL-7Rα ECDs, similar to previous studies of the full-length receptors on CD4(+) T cells. Based on these and previous results, we propose a molecular mechanism detailing the progression from the inactive IL-7Rα homodimer and IL-7Rα-γ(c) heterodimer to the active IL-7-IL-7Rα-γ(c) ternary complex whereby the two receptors undergo at least a 90° rotation away from the cell surface, moving the C termini of IL-7Rα and γ(c) from a distance of 110 Å to less than 30 Å at the cell surface. This molecular mechanism can be used to explain recently discovered IL-7- and γ(c)-independent gain-of-function mutations in IL-7Rα from B- and T-cell acute lymphoblastic leukemia patients. The mechanism may also be applicable to other γ(c) receptors that form inactive homodimers and heterodimers independent of their cytokines.


Assuntos
Interleucina-7/metabolismo , Transdução de Sinais , Dimerização , Interleucina-7/química , Ligantes , Ligação Proteica , Conformação Proteica , Difração de Raios X
9.
J Biomol Struct Dyn ; 42(4): 1733-1750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37114441

RESUMO

COVID-19, the disease responsible for the recent pandemic, is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The main protease (Mpro) of SARS-CoV-2 is an essential proteolytic enzyme that plays a number of important roles in the replication of the virus in human host cells. Blocking the function of SARS-CoV-2 Mpro offers a promising and targeted, therapeutic option for the treatment of the COVID-19 infection. Such an inhibitory strategy is currently successful in treating COVID-19 under FDA's emergency use authorization, although with limited benefit to the immunocompromised along with an unfortunate number of side effects and drug-drug interactions. Current COVID vaccines protect against severe disease and death but are mostly ineffective toward long COVID which has been seen in 5-36% of patients. SARS-CoV-2 is a rapidly mutating virus and is here to stay endemically. Hence, alternate therapeutics to treat SARS-CoV-2 infections are still needed. Moreover, because of the high degree of conservation of Mpro among different coronaviruses, any newly developed antiviral agents should better prepare us for potential future epidemics or pandemics. In this paper, we first describe the design and computational docking of a library of novel 188 first-generation peptidomimetic protease inhibitors using various electrophilic warheads with aza-peptide epoxides, α-ketoesters, and ß-diketones identified as the most effective. Second-generation designs, 192 compounds in total, focused on aza-peptide epoxides with drug-like properties, incorporating dipeptidyl backbones and heterocyclic ring motifs such as proline, indole, and pyrrole groups, yielding 8 hit candidates. These novel and specific inhibitors for SARS-CoV-2 Mpro can ultimately serve as valuable alternate and broad-spectrum antivirals against COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , SARS-CoV-2 , Simulação de Dinâmica Molecular , Síndrome de COVID-19 Pós-Aguda , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Peptídeos , Compostos de Epóxi , Simulação de Acoplamento Molecular
10.
ACS Chem Neurosci ; 15(9): 1813-1827, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621296

RESUMO

Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 µM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 µM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 µM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Compostos Organofosforados , Animais , Inibidores da Colinesterase/farmacologia , Humanos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Camundongos , Butirilcolinesterase/metabolismo , Compostos Organofosforados/farmacologia , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Indolquinonas/farmacologia
11.
Biochemistry ; 52(49): 8855-65, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24224873

RESUMO

The trp RNA-binding attenuation protein (TRAP) assembles into an 11-fold symmetric ring that regulates transcription and translation of trp-mRNA in bacilli via heterotropic allosteric activation by the amino acid tryptophan (Trp). Whereas nuclear magnetic resonance studies have revealed that Trp-induced activation coincides with both microsecond to millisecond rigidification and local structural changes in TRAP, the pathway of binding of the 11 Trp ligands to the TRAP ring remains unclear. Moreover, because each of 11 bound Trp molecules is completely surrounded by protein, its release requires flexibility of Trp-bound (holo) TRAP. Here, we used stopped-flow fluorescence to study the kinetics of Trp binding by Bacillus stearothermophilus TRAP over a range of temperatures and observed well-separated kinetic steps. These data were analyzed using nonlinear least-squares fitting of several two- and three-step models. We found that a model with two binding steps best describes the data, although the structural equivalence of the binding sites in TRAP implies a fundamental change in the time-dependent structure of the TRAP rings upon Trp binding. Application of the two-binding step model reveals that Trp binding is much slower than the diffusion limit, suggesting a gating mechanism that depends on the dynamics of apo TRAP. These data also reveal that dissociation of Trp from the second binding mode is much slower than after the first Trp binding mode, revealing insight into the mechanism for positive homotropic allostery, or cooperativity. Temperature-dependent analyses reveal that both binding modes imbue increases in bondedness and order toward a more compressed active state. These results provide insight into mechanisms of cooperative TRAP activation and underscore the importance of protein dynamics for ligand binding, ligand release, protein activation, and allostery.


Assuntos
Proteínas de Bactérias/química , Geobacillus stearothermophilus , Proteínas de Ligação a RNA/química , Fatores de Transcrição/química , Regulação Alostérica , Sítio Alostérico , Difusão , Regulação Bacteriana da Expressão Gênica , Cinética , Ligantes , Modelos Químicos , Ligação Proteica , Conformação Proteica , Termodinâmica , Triptofano/química
12.
Proc Natl Acad Sci U S A ; 107(35): 15385-90, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713740

RESUMO

Anti-TRAP (AT) is a small zinc-binding protein that regulates tryptophan biosynthesis in Bacillus subtilis by binding to tryptophan-bound trp RNA-binding attenuation protein (TRAP), thereby preventing it from binding RNA, and allowing transcription and translation of the trpEDCFBA operon. Crystallographic and sedimentation studies have shown that AT can homooligomerize to form a dodecamer, AT(12), composed of a tetramer of trimers, AT(3). Structural and biochemical studies suggest that only trimeric AT is active for binding to TRAP. Our chromatographic and spectroscopic data revealed that a large fraction of recombinantly overexpressed AT retains the N-formyl group (fAT), presumably due to incomplete N-formyl-methionine processing by peptide deformylase. Hydrodynamic parameters from NMR relaxation and diffusion measurements showed that fAT is exclusively trimeric (AT(3)), while (deformylated) AT exhibits slow exchange between both trimeric and dodecameric forms. We examined this equilibrium using NMR spectroscopy and found that oligomerization of active AT(3) to form inactive AT(12) is linked to protonation of the amino terminus. Global analysis of the pH dependence of the trimer-dodecamer equilibrium revealed a near physiological pK(a) for the N-terminal amine of AT and yielded a pH-dependent oligomerization equilibrium constant. Estimates of excluded volume effects due to molecular crowding suggest the oligomerization equilibrium may be physiologically important. Because deprotonation favors "active" trimeric AT and protonation favors "inactive" dodecameric AT, our findings illuminate a possible mechanism for sensing and responding to changes in cellular pH.


Assuntos
Algoritmos , Proteínas de Bactérias/química , Modelos Químicos , Proteínas de Ligação a RNA/química , Fatores de Transcrição/química , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Estrutura Molecular , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína
13.
Metabolites ; 13(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37110155

RESUMO

Our current understanding of organophosphorus agent (pesticides and chemical warfare nerve agents) metabolism in humans is limited to the general transformation by cytochrome P450 enzymes and, to some extent, by esterases and paraoxonases. The role of compound concentrations on the rate of clearance is not well established and is further explored in the current study. We discuss the metabolism of 56 diverse organophosphorus compounds (both pesticides and chemical warfare nerve agent simulants), many of which were explored at two variable dose regimens (high and low), determining their clearance rates (Clint) in human liver microsomes. For compounds that were soluble at high concentrations, 1D-NMR, 31P, and MRM LC-MS/MS were used to calculate the Clint and the identity of certain metabolites. The determined Clint rates ranged from 0.001 to 2245.52 µL/min/mg of protein in the lower dose regimen and from 0.002 to 98.57 µL/min/mg of protein in the high dose regimen. Though direct equivalency between the two regimens was absent, we observed (1) both mono- and bi-phasic metabolism of the OPs and simulants in the microsomes. Compounds such as aspon and formothion exhibited biphasic decay at both high and low doses, suggesting either the involvement of multiple enzymes with different KM or substrate/metabolite effects on the metabolism. (2) A second observation was that while some compounds, such as dibrom and merphos, demonstrated a biphasic decay curve at the lower concentrations, they exhibited only monophasic metabolism at the higher concentration, likely indicative of saturation of some metabolic enzymes. (3) Isomeric differences in metabolism (between Z- and E- isomers) were also observed. (4) Lastly, structural comparisons using examples of the oxon group over the original phosphorothioate OP are also discussed, along with the identification of some metabolites. This study provides initial data for the development of in silico metabolism models for OPs with broad applications.

14.
Clin Nutr ESPEN ; 54: 277-287, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963874

RESUMO

BACKGROUND: Single doses of exogenous ketone salts (KS) transiently increase circulating beta-hydroxybutyrate (BHB) (∼1 mM; 1-2 h) regardless of starting levels of ketosis; however, no studies have explored how sustained use of KS influences measures of ketonemia and glycemia. OBJECTIVES: To determine the response to a hypocaloric, well-formulated ketogenic diet (KD), with and without the inclusion of two daily racemic KS doses (6 g R-BHB + 6 g S-BHB per serving) on 1) daily fasting capillary R-BHB and glucose (R-BHB/GLUfast), 2) bi-weekly 13 h diurnal BHB and glucose (R-BHB/GLUdiur), 3) three-hours post-KS ingestion kinetics (R-BHBKS), and 4) bi-weekly fasting plasma enantiomer-specific BHB (R/S-BHBplasma). METHODS: Non-diabetic adults with overweight and obesity were randomized to receive a precisely measured hypocaloric KD (∼75 %en of maintenance) for six weeks, supplemented twice-daily with KS or placebo (PL). A non-randomized comparison group was provided an isonitrogenous/isoenergetic low-fat diet (LFD). All meals were provided to subjects. Capillary blood was collected daily to measure R-BHB/GLUfast and hourly for R-BHB/GLUdiur. Plasma was collected to measure R/S-BHBplasma, insulin, fasting glucose, and insulin resistance (HOMA-IR). Total AUC was calculated using the trapezoidal method. RESULTS: Mean R-BHBfast increased significantly during KD + PL (1.0 mM BHB), an effect enhanced 26% during KD + KS. GLUfast AUC was -6% lower during KD + KS versus LFD. Mean R-BHBdiur increased 40% in KD + KS versus KD + PL, whereas GLUdiur decreased 13% during both KDs versus LFD. R-BHBKS peaked (Δ: ∼1 mM) 1 h after the morning KS dose, but not following the afternoon dose. Both R/S-BHBplasma increased during KD independent of KS inclusion. R-BHBplasma was 50-times greater compared to S-BHBplasma, and the KS augmented S-BHBplasma 50% more than PL. Fasting insulin and HOMA-IR decreased after 14 days independent of diet. CONCLUSIONS: A hypocaloric KD was effective at reducing diurnal glucose compared to a LFD independent of weight loss, but twice-daily racemic KS ingestion during KD augmented ketonemia, both as R- and S-BHB, and decreased mean fasting glucose beyond a KD alone. The hypoglycemic effects of KD in combination with exogenous ketones merit further investigation.


Assuntos
Dieta Cetogênica , Cetose , Adulto , Humanos , Ácido 3-Hidroxibutírico , Sais , Corpos Cetônicos , Cetonas , Glucose , Insulina , Jejum
15.
Stem Cell Rev Rep ; 18(2): 696-717, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33180261

RESUMO

Many neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis and Huntington's disease, are characterized by the progressive accumulation of abnormal proteinaceous assemblies in specific cell types and regions of the brain, leading to cellular dysfunction and brain damage. Although animal- and in vitro-based studies of NDs have provided the field with an extensive understanding of some of the mechanisms underlying these diseases, findings from these studies have not yielded substantial progress in identifying treatment options for patient populations. This necessitates the development of complementary model systems that are better suited to recapitulate human-specific features of ND pathogenesis. Three-dimensional (3D) culture systems, such as cerebral organoids generated from human induced pluripotent stem cells, hold significant potential to model NDs in a complex, tissue-like environment. In this review, we discuss the advantages of 3D culture systems and 3D modeling of NDs, especially AD and FTD. We also provide an overview of the challenges and limitations of the current 3D culture systems. Finally, we propose a few potential future directions in applying state-of-the-art technologies in 3D culture systems to understand the mechanisms of NDs and to accelerate drug discovery. Graphical abstract.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Humanos , Organoides/patologia
16.
Nanomedicine (Lond) ; 17(20): 1429-1447, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301316

RESUMO

Aim: To develop and evaluate detergent-free, triple-drug-loaded, hyaluronate-coated elastic nanovesicles (H-ENVs) for the topical treatment of cutaneous leishmaniasis. Materials & methods: H-ENVs were developed and evaluated for vesicle size, entrapment efficiency, skin permeation and antileishmanial potential. Results: A 15.7 and 28.6% decrease in the cytotoxicity of paromomycin and amphotericin B, respectively, was observed in detergent-free ENVs compared with conventional ENVs. H-ENVs improved the efficacy of paromomycin against promastigote and amastigote models of leishmaniasis by 4- and 7.5-fold, respectively. In vivo investigation of H-ENVs demonstrated efficient topical management of cutaneous leishmaniasis. Conclusion: The results indicate the potential of H-ENVs as a safe topical treatment choice for cutaneous leishmaniasis.


Application of topical gel is an attractive alternative to oral or intravenous administration of drugs and is likely to deliver a higher dose of the drug to the target site with only rare systemic adverse effects. Nanotechnology-based topical drug delivery is an attractive aspect of pharmaceutical sciences that expresses interest in the topical treatment of cutaneous leishmaniasis. The authors' research focuses on the development and evaluation of novel multidrug-loaded, detergent-free nanovesicles for the simple and effective topical treatment of cutaneous leishmaniasis.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Humanos , Paromomicina , Leishmaniose Cutânea/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Administração Tópica
17.
Brain Sci ; 12(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36138878

RESUMO

Brain-Derived Neurotropic Factor (BDNF) expression is decreased in conditions associated with cognitive decline as well as metabolic diseases. One potential strategy to improve metabolic health and elevate BDNF is by increasing circulating ketones. Beta-Hydroxybutyrate (BHB) stimulates BDNF expression, but the association of circulating BHB and plasma BDNF in humans has not been widely studied. Here, we present results from three studies that evaluated how various methods of inducing ketosis influenced plasma BDNF in humans. Study 1 determined BDNF responses to a single bout of high-intensity cycling after ingestion of a dose of ketone salts in a group of healthy adults who were habitually consuming either a mixed diet or a ketogenic diet. Study 2 compared how a ketogenic diet versus a mixed diet impacts BDNF levels during a 12-week resistance training program in healthy adults. Study 3 examined the effects of a controlled hypocaloric ketogenic diet, with and without daily use of a ketone-salt, on BDNF levels in overweight/obese adults. We found that (1) fasting plasma BDNF concentrations were lower in keto-adapted versus non keto-adapted individuals, (2) intense cycling exercise was a strong stimulus to rapidly increase plasma BDNF independent of ketosis, and (3) clinically significant weight loss was a strong stimulus to decrease fasting plasma BDNF independent of diet composition or level of ketosis. These results highlight the plasticity of plasma BDNF in response to lifestyle factors but does not support a strong association with temporally matched BHB concentrations.

18.
Structure ; 17(1): 54-65, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19141282

RESUMO

IL-7 and IL-7Ralpha bind the gamma(c) receptor, forming a complex crucial to several signaling cascades leading to the development and homeostasis of T and B cells. We report that the IL-7Ralpha ectodomain uses glycosylation to modulate its binding constants to IL-7, unlike the other receptors in the gamma(c) family. IL-7 binds glycosylated IL-7Ralpha 300-fold more tightly than unglycosylated IL-7Ralpha, and the enhanced affinity is attributed primarily to an accelerated on rate. Structural comparison of IL-7 in complex to both forms of IL-7Ralpha reveals that glycosylation does not participate directly in the binding interface. The SCID mutations of IL-7Ralpha locate outside the binding interface with IL-7, suggesting that the expressed mutations cause protein folding defects in IL-7Ralpha. The IL-7/IL-7Ralpha structures provide a window into the molecular recognition events of the IL-7 signaling cascade and provide sites to target for designing new therapeutics to treat IL-7-related diseases.


Assuntos
Subunidade alfa de Receptor de Interleucina-7/química , Interleucina-7/química , Biofísica , Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática , Glicosilação , Humanos , Conformação Proteica
19.
ACS Infect Dis ; 7(7): 1901-1922, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33538576

RESUMO

Due to the limitations of existing medications, there is a critical need for new drugs to treat visceral leishmaniasis. Since arylimidamides and antifungal azoles both show oral activity in murine visceral leishmaniasis models, a molecular hybridization approach was employed where arylimidamide and azole groups were separated by phenoxyalkyl linkers in an attempt to capitalize on the favorable antileishmanial properties of both series. Among the target compounds synthesized, a greater antileishmanial potency against intracellular Leishmania donovani was observed as the linker length increased from two to eight carbons and when an imidazole ring was employed as the terminal group compared to a 1,2,4-triazole group. Compound 24c (N-(4-((8-(1H-imidazol-1-yl)octyl)oxy)-2-isopropoxyphenyl) picolinimidamide) displayed activity against L. donovani intracellular amastigotes with an IC50 value of 0.53 µM. When tested in a murine visceral leishmaniasis model, compound 24c at a dose of 75 mg/kg/day p.o. for five consecutive days resulted in a modest 33% decrease in liver parasitemia compared to the control group, indicating that further optimization of these molecules is needed. While potent hybrid compounds bearing an imidazole terminal group were also strong inhibitors of recombinant CYP51 from L. donovani, as assessed by a fluorescence-based assay, additional targets are likely to play an important role in the antileishmanial action of these compounds.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Preparações Farmacêuticas , Animais , Antiprotozoários/farmacologia , Azóis , Leishmania donovani/genética , Leishmaniose Visceral/tratamento farmacológico , Camundongos
20.
J Med Chem ; 64(20): 15214-15249, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34614347

RESUMO

Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound 79. This molecule demonstrates potent antibacterial activity against diverse Gram-positive pathogens, inhibition of both DNA gyrase and topoisomerase IV, a low frequency of resistance, a favorable in vitro cardiovascular safety profile, and in vivo efficacy in a murine model of methicillin-resistant Staphylococcus aureus infection.


Assuntos
Antibacterianos/farmacologia , Dioxanos/farmacologia , Inibidores Enzimáticos/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Dioxanos/síntese química , Dioxanos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA