Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 570(7762): 504-508, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31117118

RESUMO

The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative1-4 to the energy-intensive Haber-Bosch process, which dominates industrial ammonia production. However, there are considerable scientific and technical challenges5,6 facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation7-9 rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes9, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream10, in the atmosphere or even in the catalyst itself. Although these sources of experimental artefacts are beginning to be recognized and managed11,12, concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments designed to identify and then eliminate or quantify the sources of contamination. Here we propose a rigorous procedure using 15N2 that enables us to reliably detect and quantify the electrochemical reduction of nitrogen to ammonia. We demonstrate experimentally the importance of various sources of contamination, and show how to remove labile nitrogen-containing compounds from the nitrogen gas as well as how to perform quantitative isotope measurements with cycling of 15N2 gas to reduce both contamination and the cost of isotope measurements. Following this protocol, we find that no ammonia is produced when using the most promising pure-metal catalysts for this reaction in aqueous media, and we successfully confirm and quantify ammonia synthesis using lithium electrodeposition in tetrahydrofuran13. The use of this rigorous protocol should help to prevent false positives from appearing in the literature, thus enabling the field to focus on viable pathways towards the practical electrochemical reduction of nitrogen to ammonia.

3.
Inorg Chem ; 54(3): 707-9, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25390797

RESUMO

Transition-metal silicides are part of an important family of intermetallic compounds, but the high-temperature reactions that are generally required to synthesize them preclude the formation of colloidal nanoparticles. Here, we show that palladium, copper, and nickel nanoparticles react with monophenylsilane in trioctylamine and squalane at 375 °C to form colloidal Pd(2)Si, Cu(3)Si, and Ni(2)Si nanoparticles, respectively. These metal silicide nanoparticles were screened as electrocatalysts for the hydrogen evolution reaction, and Pd(2)Si and Ni(2)Si were identified as active catalysts that require overpotentials of -192 and -243 mV, respectively, to produce cathodic current densities of -10 mA cm(-2).

4.
ACS Omega ; 5(27): 16455-16459, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685809

RESUMO

The recirculation of gases in a sealed reactor system is a broadly useful method in catalytic and electrocatalytic studies. It is especially relevant when a reactant gas reacts slowly with respect to residence time in a catalytic reaction zone and when mass transport control through the reaction zone is necessary. This need is well illustrated in the field of electrocatalytic N2 reduction, where the need for recirculation of 15N2 has recently become more apparent. Herein, we describe the design, fabrication, use, and specifications of a lubricant-free, readily constructed recirculating pump fabricated entirely from glass and inert polymer (poly(ether ether ketone) (PEEK), poly(tetrafluoroethylene) (PTFE)) components. Using these glass and polymer components ensures chemical compatibility between the piston pump and a wide range of chemical environments, including strongly acidic and organic electrolytes often employed in studies of electrocatalytic N2 reduction. The lubricant-free nature of the pump and the presence of components made exclusively of glass and PEEK/PTFE mitigate contamination concerns associated with recirculating gases saturated with corrosive or reactive vapors for extended periods. The gas recirculating glass pump achieved a flow rate of >500 mL min-1 N2 against atmospheric pressure at 15 W peak power input and >100 mL min-1 N2 against a differential pressure of +6 in. H2O (∼15 mbar) at 10 W peak power input.

5.
Chem Commun (Camb) ; 50(75): 11026-8, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25099117

RESUMO

Amorphous tungsten phosphide (WP), which has been synthesized as colloidal nanoparticles with an average diameter of 3 nm, has been identified as a new electrocatalyst for the hydrogen-evolution reaction (HER) in acidic aqueous solutions. WP/Ti electrodes produced current densities of -10 mA cm(-2) and -20 mA cm(-2) at overpotentials of only -120 mV and -140 mV, respectively, in 0.50 M H2SO4(aq).

6.
ACS Nano ; 8(11): 11101-7, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25250976

RESUMO

Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA