Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 189(3): 1794-1813, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35485198

RESUMO

Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xilosidases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Xilosidases/genética , Xilosidases/metabolismo
2.
Plant Cell Physiol ; 62(12): 1912-1926, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34059917

RESUMO

The cell wall is essential for plant survival. Determining the relationship between cell wall structure and function using mutant analysis or overexpressing cell wall-modifying enzymes has been challenging due to the complexity of the cell wall and the appearance of secondary, compensatory effects when individual polymers are modified. In addition, viability of the plants can be severely impacted by wall modification. A useful model system for studying structure-function relationships among extracellular matrix components is the seed coat epidermal cells of Arabidopsis thaliana. These cells synthesize relatively simple, easily accessible, pectin-rich mucilage that is not essential for plant viability. In this study, we expressed enzymes predicted to modify polysaccharide components of mucilage in the apoplast of seed coat epidermal cells and explored their impacts on mucilage. The seed coat epidermal-specific promoter TESTA ABUNDANT2 (TBA2) was used to drive expression of these enzymes to avoid adverse effects in other parts of the plant. Mature transgenic seeds expressing Rhamnogalacturonate lyase A (RglA) or Rhamnogalacturonate lyase B (RglB) that degrade the pectin rhamnogalacturonan-I (RG-I), a major component of mucilage, had greatly reduced mucilage capsules surrounding the seeds and concomitant decreases in the monosaccharides that comprise the RG-I backbone. Degradation of the minor mucilage component homogalacturonan (HG) using the HG-degrading enzymes Pectin lyase A (PLA) or ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2) resulted in developing seed coat epidermal cells with disrupted cell-cell adhesion and signs of early cell death. These results demonstrate the feasibility of manipulating the seed coat epidermal cell extracellular matrix using a targeted genetic engineering approach.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Sementes/química
3.
Plant Cell Physiol ; 62(12): 1847-1857, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34195842

RESUMO

In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research.


Assuntos
Biotecnologia , Mucilagem Vegetal/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Parede Celular/metabolismo
4.
Plant Mol Biol ; 101(4-5): 373-387, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31422517

RESUMO

KEY MESSAGE: Polysaccharide composition of seed mucilage was successfully modified using three seed coat-specific promoters driving expression of genes encoding cell wall-modifying enzymes. Arabidopsis thaliana seed coat epidermal cells synthesize and secrete large quantities of mucilage, a specialized secondary cell wall composed of cellulose, hemicellulose, and pectin. The composition and structure of mucilage confers its unique properties of expansion, extrusion, and adherence. We are developing seed mucilage as a model to study the biochemical and biological consequences of manipulating cell wall polysaccharides in vivo using cell wall-modifying enzymes. To specifically engineer mucilage composition and avoid altering other cell types, seed coat-specific promoters are required. In this study, we investigated the ability of seed coat-specific promoters from three genes, TESTA-ABUNDANT2 (TBA2), PEROXIDASE36 (PER36), and MUCILAGE-MODIFIED4 (MUM4), to express the cell wall modifying ß-galactosidase (BGAL)-encoding gene MUCILAGE-MODIFIED2 (MUM2) and complement the mum2 mutant. The strength of the three promoters relative to one another was found to vary by two to 250 fold, and correlated with their ability to rescue the mum2 mutant phenotype. The strongest of the three promoters, TBA2p, was then used to examine the ability of three MUM2 homologs to complement the mum2 extrusion and cell wall composition phenotypes. The degree of complementation was variable and correlated with the amino acid sequence similarity between the homologous gene products and MUM2. These data demonstrate that all three seed coat-specific promoters can drive expression of genes encoding carbohydrate-active enzymes in a spatial and temporal pattern sufficiently to modify polysaccharide composition in seed mucilage without obvious negative consequences to the rest of the plant.


Assuntos
Arabidopsis/genética , Parede Celular/metabolismo , Mucilagem Vegetal/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Parede Celular/química , Regulação da Expressão Gênica de Plantas , Filogenia , Mucilagem Vegetal/genética , Regiões Promotoras Genéticas , Domínios Proteicos , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
5.
Plant Mol Biol ; 95(1-2): 33-50, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730525

RESUMO

KEY MESSAGE: The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species. During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos/genética , Regiões Promotoras Genéticas , Sementes/genética , Regiões 5' não Traduzidas/genética , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Inativação Gênica , Genes Reporter , Teste de Complementação Genética , Glucuronidase/metabolismo , Íntrons/genética , Complexos Multienzimáticos/metabolismo , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência , Fatores de Transcrição/metabolismo
6.
Front Plant Sci ; 14: 1239191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692427

RESUMO

Pilosella piloselloides var. praealta (syn. P. praealta; Hieracium praealtum) is a versatile model used to study gametophytic apomixis. In this system apomixis is controlled by three loci: one that controls the avoidance of meiosis (LOA), one that controls the avoidance of fertilization (LOP) and a third that controls autonomous endosperm formation (AutE). Using a unique polyhaploid mapping approach the LOP locus was mapped to a 654 kb genomic interval syntenic to linkage group 8 of Lactuca sativa. Polyhaploids form through the gametophytic action of a dominant determinant at LOP, so the mapped region represents both a functional and a physical domain for LOP in P. piloselloides. Allele sequence divergence (ASD) analysis of the PARTHENOGENESIS (PAR) gene within the LOP locus revealed that dominant PAR alleles in Pilosella remain highly similar across the genus, whilst the recessive alleles are more divergent. A previous report noted that dominant PAR alleles in both Pilosella and Taraxacum are modified by the presence of a class II transposable element (TE) in the promoter of the gene. This observation was confirmed and further extended to the related genus Hieracium. Sufficient differences were noted in the structure and location of the TE elements to conclude that TE insertional events had occurred independently in the three genera. Measures of allele crossover amongst the polyhaploids revealed that P. piloselloides is an autopolyploid species with tetrasomic inheritance. It was also noted that the dominant determinant of LOP in P. piloselloides could transmit via a diploid gamete (pollen or egg) but not via a haploid gamete. Using this information, a model is presented of how gametophytic apomixis may have evolved in several members of the Lactuceae, a tribe of the Asteraceae.

7.
Appl Immunohistochem Mol Morphol ; 31(5): 339-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093713

RESUMO

The type of fixative used for preserving tumor specimens can significantly impact the performance of the immunohistochemistry and in situ hybridization assays used for assessing human epidermal growth factor receptor 2 (HER2) status. This study reports the prevalence of the use of alternative fixatives other than the guideline-recommended 10% neutral buffered formalin (NBF) during HER2 testing in a real-world setting. The effects of alternative fixatives [20% NBF and 10% unbuffered formalin (UBF) fixatives] on HER2 testing of breast cancer (BC) and gastric cancer (GC) cell lines and tissues are also assessed. Overall, 117,636 tumor samples received at a central laboratory from >8000 clinical trial sites across 60 countries were reviewed to determine the prevalence of alternative fixative usage. To investigate the impact of alternative fixatives, 27 cell lines (21 BC and 6 GC) and 76 tumor tissue samples (50 BC and 26 GC) were fixed in 10% NBF, 20% NBF, or 10% UBF, and evaluated for HER2 status by immunohistochemistry and in situ hybridization. Real-world data showed that 9195 (7.8%) tumor samples were preserved using an alternative fixative. In cell lines, overall percentage agreement, negative percentage agreement, and positive percentage agreement among the 3 fixatives were 100%. In tumor tissues, the agreement among 10% NBF, 20% NBF, and 10% UBF ranged between 94.7% and 96.6% for negative percentage agreement and 90.9% for overall percentage agreement compared with a range of 58.3% to 66.7% for positive percentage agreement. These results suggest that alternative fixatives may have the potential to convert HER2 status in tissues from positive to negative.


Assuntos
Neoplasias da Mama , Neoplasias Gástricas , Humanos , Feminino , Fixadores , Fixação de Tecidos/métodos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Formaldeído
8.
Arch Pathol Lab Med ; 142(11): 1383-1387, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29708429

RESUMO

April 12, 2017 marked a significant day in the evolution of digital pathology in the United States, when the US Food and Drug Administration announced its approval of the Philips IntelliSite Pathology Solution for primary diagnosis in surgical pathology. Although this event is expected to facilitate more widespread adoption of whole slide imaging for clinical applications in the United States, it also raises a number of questions as to the means by which pathologists might choose to incorporate this technology into their clinical practice. This article from the College of American Pathologists Digital Pathology Committee reviews frequently asked questions on this topic and provides answers based on currently available information.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Patologia Cirúrgica/legislação & jurisprudência , Patologia Cirúrgica/métodos , United States Food and Drug Administration , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA