Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(20): 7970-7979, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35523004

RESUMO

Separations based on molecular size (molecular sieving) are a solution for environmental remediation. We have synthesized and characterized two new metal-organic frameworks (MOFs) (Zn2M; M = Zn, Cd) with ultramicropores (<0.7 nm) suitable for molecular sieving. We explore the synthesis of these MOFs and the role that the DMSO/H2O/DMF solvent mixture has on the crystallization process. We further explore the crystallographic data for the DMSO and methanol solvated structures at 273 and 100 K; this not only results in high-quality structural data but also allows us to better understand the structural features at temperatures around the gas adsorption experiments. Structurally, the main difference between the two MOFs is that the central metal in the trimetallic node can be changed from Zn to Cd and that results in a sub-Å change in the size of the pore aperture, but a stark change in the gas adsorption properties. The separation selectivity of the MOF when M = Zn is infinite given the pore aperture of the MOF can accommodate CO2 while N2 and/or CH4 is excluded from entering the pore. Furthermore, due to the size exclusion behavior, the MOF has an adsorption selectivity of 4800:1 CO2/N2 and 5 × 1028:1 CO2/CH4. When M = Cd, the pore aperture of the MOF increases slightly, allowing N2 and CH4 to enter the pore, resulting in a 27.5:1 and a 10.5:1 adsorption selectivity, respectively; this is akin to UiO-66, a MOF that is not able to function as a molecular sieve for these gases. The data delineate how subtle sub-Å changes to the pore aperture of a framework can drastically affect both the adsorption selectivity and separation selectivity.

2.
Environ Sci Technol ; 54(21): 13509-13516, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058682

RESUMO

The billions of tons of mineral dust released into the atmosphere each year provide an important surface for reaction with gas-phase pollutants. These reactions, which are often enhanced in the presence of light, can change both the gas-phase composition of the atmosphere and the composition and properties of the dust itself. Because dust contains titanium-rich grains, studies of dust photochemistry have largely employed commercial titanium dioxide as a proxy for its photochemically active fraction; to date, however, the validity of this model system has not been empirically determined. Here, for the first time, we directly investigate the photochemistry of the complement of natural titanium-containing minerals most relevant to mineral dust, including anatase, rutile, ilmenite, titanite, and several titanium-bearing species. Using ozone as a model gas-phase pollutant, we show that titanium-containing minerals other than titanium dioxide can also photocatalyze trace gas uptake, that samples of the same mineral phase can display very different reactivity, and that prediction of dust photoreactivity based on elemental/mineralogical analysis and/or light-absorbing properties is challenging. Together, these results show that the photochemistry of atmospheric dust is both richer and more complex than previously considered, and imply that a full understanding of the scope and impact of dust-mediated processes will require the community to engage with this complexity via the study of ambient mineral dust samples from diverse source regions.


Assuntos
Poeira , Titânio , Atmosfera , Poeira/análise , Minerais , Fotoquímica
3.
Environ Sci Process Impacts ; 24(11): 2070-2084, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36044235

RESUMO

High-latitude urban regions provide a unique and complex range of environmental surfaces for uptake of trace pollutant gases, including winter road maintenance materials (e.g., gravel, rock salts, and anti-icer, a saline solution applied to roads during winter). In an effort to reduce the negative environmental and economic impacts of road salts, many municipalities have turned to agro-based anti-icing materials that are rich in organic material. To date, the reactivity of both anti-icer and saline road dust with pollutant gases remain unexplored, which limits our ability to assess the potential impacts of these materials on air quality in high-latitude regions. Here, we used a coated-wall flow tube to investigate the uptake of ozone, an important air pollutant, by road dust collected in Edmonton, Canada. At 25% relative humidity (RH) and 50 ppb ozone, γBET for ozone uptake by this sample is (8.0 ± 0.7) × 10-8 under dark conditions and (2.1 ± 0.1) × 10-7 under illuminated conditions. These values are 2-4× higher than those previously obtained by our group for natural mineral dusts, but are not large enough for suspended road dust to influence local ozone mixing ratios. In a separate set of experiments, we also investigated the uptake of ozone by calcium chloride (i.e., road salt) and commercial anti-icer solution. Although ozone uptake by pure calcium chloride was negligible, ozone uptake by anti-icer was significant, which implies that the reactivity of anti-icer is conferred by its organic content. Importantly, ozone uptake by anti-icer-and, to a lesser extent, road dust doped with anti-icer-leads to the release of inorganic chlorine gas, which we collected using inline reductive trapping and quantified using ion chromatography. To explain these results, we propose a novel pathway for chlorine activation: here, ozone oxidation of the anti-icer organic fraction (in this case, molasses) yields reactive OH radicals that can oxidize chloride. In summary, this study demonstrates the ability of road dust and anti-icer to influence atmospheric oxidant mixing ratios in cold-climate urban areas, and highlights previously unidentified air quality impacts of winter road maintenance decisions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/química , Poeira/análise , Cloro , Cloretos , Cloreto de Cálcio/análise , Sais/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
4.
Chem Sci ; 10(21): 5576-5581, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293741

RESUMO

Nitrous acid (HONO) is a reservoir of NO x and an emerging pollutant having direct impacts on air quality, both in- and outdoors, as well as on human health. In this work, the amine-functionalized metal-organic framework (MOF), UiO-66-NH2, was investigated due to its potential to selectively decontaminate nitrous acid at environmentally relevant concentrations. UiO-66-NH2 proved to be effective in the removal of nitrous acid from a continuous gaseous stream. This is observed via the formation of an aryl diazonium salt that subsequently converts to a phenol with a concomitant release of nitrogen gas. This process is preceded via the formation of the nitrosonium cation (likely protonation from an acidic proton on the node). Thus, UiO-66-NH2 is capable of selectively converting the pollutant nitrous acid to benign products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA