Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 37(3): 418-424, 1998 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11670290

RESUMO

Treatment of titanium tetrachloride (2 equiv) with dimethyl diselenide or diethyl diselenide (1 equiv) in hexane at 0 degrees C, followed by crystallization at -20 degrees C, afforded (TiCl(4))(2)(Se(2)(CH(3))(2)) (78%) and (TiCl(4))(2)(Se(2)(CH(2)CH(3))(2)) (63%), respectively, as red and orange crystalline solids. (TiCl(4))(2)(Se(2)(CH(2)CH(3))(2)) is stable in solution and in the solid state at 23 degrees C, but (TiCl(4))(2)(Se(2)(CH(3))(2)) decomposes to TiCl(4)(Se(CH(3))(2))(2), gray selenium, and other products upon standing in hexane solution, in the solid state, or upon sublimation at 250 degrees C. Treatment of titanium tetrachloride with 2 equiv of dimethyl selenide or diethyl selenide in hexane at ambient temperature afforded a spectroscopically pure brick red solid of TiCl(4)(Se(CH(3))(2))(2) (96%) or TiCl(4)(Se(CH(2)CH(3))(2))(2) (96%), respectively. X-ray crystal structures of (TiCl(4))(2)(Se(2)(CH(2)CH(3))(2)), TiCl(4)(Se(CH(3))(2))(2), and TiCl(4)(Se(CH(2)CH(3))(2))(2) were determined to establish solid state nuclearities. (TiCl(4))(2)(Se(2)(CH(2)CH(3))(2)) crystallizes in the hexagonal space group P3(1)21 with a = 12.106(1) Å, c = 10.786(1) Å, V = 1368.8(4) Å(3), and Z = 3. TiCl(4)(Se(CH(3))(2))(2) crystallizes in the monoclinic space group P2(1)/n with a = 8.175(1) Å, b = 13.051(1) Å, c = 16.871(3) Å, beta = 102.675(8) degrees, V = 1756.3(2) Å(3), and Z = 4. TiCl(4)(Se(CH(2)CH(3))(2))(2) crystallizes in the monoclinic space group P2(1)/n with a = 6.404(4) Å, b = 16.376(7) Å, c = 13.058(8) Å, beta = 101.45(4) degrees, V = 1342(1) Å(3), and Z = 4. TiCl(4)(Se(CH(3))(2))(2) and TiCl(4)(Se(CH(2)CH(3))(2))(2) were evaluated as precursors to titanium diselenide films. TiCl(4)(Se(CH(3))(2))(2) was not a good precursor, but TiCl(4)(Se(CH(2)CH(3))(2))(2) afforded rose-bronze colored titanium diselenide films at substrate temperatures of 500-600 degrees C. The films were characterized by X-ray powder diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Surprisingly, titanium diselenide films prepared from TiCl(4)(Se(CH(2)CH(3))(2))(2) are moisture sensitive and are apparently hydrolyzed by ambient moisture to titanium dioxide and hydrogen selenide. The relevance of the coordination chemistry to the development of precursors to titanium diselenide films is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA