RESUMO
Queensland fruit fly, Bactrocera tryoni, Froggatt (Diptera: Tephritidae) is Australia's primary fruit fly pest species. Integrated Pest Management (IPM) has been adopted to sustainably manage this polyphagous species with a reduced reliance on chemical pesticides. At present, control measures are aimed at the adult stages of the fly, with no IPM tools available to target larvae once they exit the fruit and pupate in the soil. The use of entomopathogenic fungi may provide a biologically-based control method for these soil-dwelling life stages. The effectiveness of fungal isolates of Metarhizium and Beauveria species were screened under laboratory conditions against Queensland fruit fly. In bioassays, 16 isolates were screened for pathogenicity following exposure of third-instar larvae to inoculum-treated vermiculite used as a pupation substrate. The best performing Metarhizium sp. isolate achieved an average percentage mortality of 93%, whereas the best performing Beauveria isolate was less efficient, with an average mortality of 36%. Susceptibility to infection during different development stages was investigated using selected fungal isolates, with the aim of assessing all soil-dwelling life stages from third-instar larvae to final pupal stages and emerging adults. Overall, the third larval instar was the most susceptible stage, with average mortalities between 51-98% depending on the isolate tested. Moreover, adult mortality was significantly higher when exposed to inoculum during pupal eclosion, with mortalities between 56-76% observed within the first nine days post-emergence. The effect of temperature and inoculum concentration on insect mortality were assessed independently with candidate isolates to determine the optimum temperature range for fungal biological control activity and the rate required for application in field conditions. Metarhizium spp. are highly efficacious at killing Queensland fruit fly and have potential for use as biopesticides to target soil-dwelling and other life stages of B. tryoni.
Assuntos
Beauveria , Metarhizium , Tephritidae , Animais , Solo , Larva , Controle Biológico de Vetores/métodos , Drosophila , PupaRESUMO
Certain crops depend upon pollination services for fruit set, and, of these, almonds are of high value for Australia. Stressors, such as diseases, parasites, pesticides, and nutrition, can contribute to honey bee Apis mellifera L. colony decline, thereby reducing bee activity and pollination efficiency. In Australia, field studies are required to monitor honey bee health and to ascertain whether factors associated with colony decline are impacting hives. We monitored honey bee colonies during and after pollination services of almond. Video surveillance technology was used to quantify bee activity, and bee-collected pollen was periodically tested for pesticide residues. Plant species diversity was also assessed using DNA metabarcoding of the pollen. Results showed that bee activity increased in almond but not in bushland. Residues detected included four fungicides, although the quantities were of low risk of oral toxicity to bees. Floral diversity was lower in the pollen collected by bees from almonds compared to bushland. However, diversity was higher at the onset and conclusion of the almond bloom, suggesting that bees foraged more widely when availability was low. Our findings suggest that commercial almond orchards may sustain healthier bee colonies compared to bushland in early spring, although the magnitude of the benefit is likely landscape-dependent.
RESUMO
Entomopathogenic fungi from the genus Beauveria (Vuillemin) play an important role in controlling insect populations and have been increasingly utilized for the biological control of insect pests. Various studies have reported that Beauveria bassiana (Bals.), Vuill. also has the ability to colonize a broad range of plant hosts as endophytes without causing disease but while still maintaining the capacity to infect insects. Beauveria is often applied as an inundative spore application, but little research has considered how plant colonization may alter the ability to persist in the environment. The aim of this study was to investigate potential interactions between B. bassiana and Zea mays L. (maize) in the rhizosphere following inoculation, in order to understand the factors that may affect environmental persistence of the fungi. The hypothesis was that different isolates of B. bassiana have the ability to colonize maize roots and/or rhizosphere soil, resulting in effects to the plant microbiome. To test this hypothesis, a two-step nested PCR protocol was developed to find and amplify Beauveria in planta or in soil; based on the translation elongation factor 1-alpha (ef1α) gene. The nested protocol was also designed to enable Beauveria species differentiation by sequence analysis. The impact of three selected B. bassiana isolates applied topically to roots on the rhizosphere soil community structure and function were consequently assessed using denaturing gradient gel electrophoresis (DGGE) and MicroRespTM techniques. The microbial community structure and function were not significantly affected by the presence of the isolates, however, retention of the inocula in the rhizosphere at 30 days after inoculation was enhanced when plants were subjected to intensive wounding of foliage to crudely simulate herbivory. The plant defense response likely changed under wound stress resulting in the apparent recruitment of Beauveria in the rhizosphere, which may be an indirect defensive strategy against herbivory and/or the result of induced systemic susceptibility in maize enabling plant colonization.
RESUMO
The identification of fungal endophytes often relies on culturing isolates from surface-sterilized plant tissue. However, molecular techniques have enabled the rapid detection and identification of targeted endophyte species, and next-generation sequencing technology provides an opportunity to obtain comprehensive information on endophytic communities, directly from plant tissue. In order to achieve accurate detection from internal tissues, surface microbes and associated deoxyribonucleic acid (DNA) must be eliminated, with particular consideration for the type of plant tissue and the efficacy of the surface sterilization procedure used. The methodology described later was developed specifically for detection of DNA from the entomopathogenic fungal endophyte Beauveria bassiana (Vuillemin) (Ascomycota: Hypocreales) in various tissues of Zea mays (L.). However, the protocol may be easily applied to other fungi and bacterial endophytes. Included is a stringent sodium hypochlorite-based surface sterilization protocol for plant material in preparation for polymerase chain reaction (PCR) to detect target DNA within plant tissue. Included are a treatment for dealing with surface DNA contamination and a novel procedure for assessing the efficacy of surface sterilization using PCR.