Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 13(12): e1002310, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633141

RESUMO

Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.


Assuntos
Cromatina/química , DNA/química , Engenharia Genética/métodos , Modelos Genéticos , Simbolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Desenho Assistido por Computador , Comportamento Cooperativo , DNA/metabolismo , Bases de Dados de Ácidos Nucleicos , Engenharia Genética/normas , Engenharia Genética/tendências , Humanos , Internet , Motivos de Nucleotídeos , Publicações , Sequências Reguladoras de Ácido Nucleico , Software
2.
Biochem Soc Trans ; 45(3): 793-803, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620041

RESUMO

A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select parts to create systems, and modeling and simulation tools to evaluate alternative design choices. Data standards enable the ready exchange of information within such a workflow, allowing repositories and tools to be connected from a diversity of sources. The present paper describes one such workflow that utilizes, among others, the Synthetic Biology Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Language to model these designs, and SBOL Visual to visualize these designs. We describe how a standard-enabled workflow can be used to produce types of design information, including multiple repositories and software tools exchanging information using a variety of data standards. Recently, the ACS Synthetic Biology journal has recommended the use of SBOL in their publications.


Assuntos
Biologia Sintética/métodos , Fluxo de Trabalho , Modelos Biológicos , Software
3.
ACS Synth Biol ; 10(10): 2592-2606, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34546707

RESUMO

As an engineering endeavor, synthetic biology requires effective sharing of genetic design information that can be reused in the construction of new designs. While there are a number of large community repositories of design information, curation of this information has been limited. This in turn limits the ways in which design information can be put to use. The aim of this work was to improve this situation by creating a curated library of parts from the International Genetically Engineered Machines (iGEM) registry data set. To this end, an analysis of the Synthetic Biology Open Language (SBOL) version of the iGEM registry was carried out using four different approaches-simple statistics, SnapGene autoannotation, SYNBICT autoannotation, and expert analysis-the results of which are presented herein. Key challenges encountered include the use of free text, insufficient part provenance, part duplication, lack of part removal, and insufficient continuous curation. On the basis of these analyses, the focus has shifted from the creation of a curated iGEM part library to instead the extraction of a set of lessons, which are presented here. These lessons can be exploited to facilitate the creation and curation of other part libraries using a simpler and less labor intensive process.


Assuntos
Conjuntos de Dados como Assunto , Biologia Sintética/métodos , Automação , Linguagens de Programação
4.
Front Bioeng Biotechnol ; 8: 1009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015004

RESUMO

The Synthetic Biology Open Language (SBOL) is a community-developed data standard that allows knowledge about biological designs to be captured using a machine-tractable, ontology-backed representation that is built using Semantic Web technologies. While early versions of SBOL focused only on the description of DNA-based components and their sub-components, SBOL can now be used to represent knowledge across multiple scales and throughout the entire synthetic biology workflow, from the specification of a single molecule or DNA fragment through to multicellular systems containing multiple interacting genetic circuits. The third major iteration of the SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model with a focus on real-world applications, based on experience from the deployment of SBOL in a variety of scientific and industrial settings. Here, we introduce the SBOL3 specification both in comparison to previous versions of SBOL and through practical examples of its use.

5.
ACS Synth Biol ; 9(9): 2410-2417, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786354

RESUMO

Synthetic biology aims to develop novel biological systems and increase their reproducibility using engineering principles such as standardization and modularization. It is important that these systems can be represented and shared in a standard way to ensure they can be easily understood, reproduced, and utilized by other researchers. The Synthetic Biology Open Language (SBOL) is a data standard for sharing biological designs and information about their implementation and characterization. Previously, this standard has only been used to represent designs in systems where the same design is implemented in every cell; however, there is also much interest in multicellular systems, in which designs involve a mixture of different types of cells with differing genotype and phenotype. Here, we show how the SBOL standard can be used to represent multicellular systems, and, hence, how researchers can better share designs with the community and reliably document intended system functionality.


Assuntos
Software , Biologia Sintética/métodos , Animais , Técnicas Biossensoriais , Células CHO , Cricetinae , Cricetulus , Plasmídeos/genética , Plasmídeos/metabolismo
6.
J Integr Bioinform ; 17(2-3)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32589605

RESUMO

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions. This document describes SBOL 3.0.0, which condenses and simplifies previous versions of SBOL based on experiences in deployment across a variety of scientific and industrial settings. In particular, SBOL 3.0.0, (1) separates sequence features from part/sub-part relationships, (2) renames Component Definition/Component to Component/Sub-Component, (3) merges Component and Module classes, (4) ensures consistency between data model and ontology terms, (5) extends the means to define and reference Sub-Components, (6) refines requirements on object URIs, (7) enables graph-based serialization, (8) moves Systems Biology Ontology (SBO) for Component types, (9) makes all sequence associations explicit, (10) makes interfaces explicit, (11) generalizes Sequence Constraints into a general structural Constraint class, and (12) expands the set of allowed constraints.


Assuntos
Linguagens de Programação , Biologia Sintética , Idioma , Modelos Biológicos , Software
7.
ACS Synth Biol ; 8(1): 191-193, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30403869

RESUMO

The Synthetic Biology Open Language (SBOL) is a data standard for the representation of engineered biological systems. SBOL is implemented in the form of software libraries which can be used to add SBOL support to both new and existing software tools. While existing libraries allow for software to be developed that runs on a server or is installed locally, they lack the capability to create SBOL software that runs directly in a Web browser. Here, we address this issue by presenting sboljs, a JavaScript software library for SBOL that is capable of being used both on the server and in the Web browser.


Assuntos
Biologia Sintética/métodos , Internet , Linguagens de Programação , Software
8.
ACS Synth Biol ; 8(7): 1548-1559, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29782151

RESUMO

Computational models are essential to engineer predictable biological systems and to scale up this process for complex systems. Computational modeling often requires expert knowledge and data to build models. Clearly, manual creation of models is not scalable for large designs. Despite several automated model construction approaches, computational methodologies to bridge knowledge in design repositories and the process of creating computational models have still not been established. This paper describes a workflow for automatic generation of computational models of genetic circuits from data stored in design repositories using existing standards. This workflow leverages the software tool SBOLDesigner to build structural models that are then enriched by the Virtual Parts Repository API using Systems Biology Open Language (SBOL) data fetched from the SynBioHub design repository. The iBioSim software tool is then utilized to convert this SBOL description into a computational model encoded using the Systems Biology Markup Language (SBML). Finally, this SBML model can be simulated using a variety of methods. This workflow provides synthetic biologists with easy to use tools to create predictable biological systems, hiding away the complexity of building computational models. This approach can further be incorporated into other computational workflows for design automation.


Assuntos
Redes Reguladoras de Genes/genética , Biologia Sintética/métodos , Biologia de Sistemas/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Linguagens de Programação , Projetos de Pesquisa , Software , Fluxo de Trabalho
9.
ACS Synth Biol ; 8(7): 1498-1514, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31059645

RESUMO

Standard representation of data is key for the reproducibility of designs in synthetic biology. The Synthetic Biology Open Language (SBOL) has already emerged as a data standard to represent information about genetic circuits, and it is based on capturing data using graphs. The language provides the syntax using a free text document that is accessible to humans only. This paper describes SBOL-OWL, an ontology for a machine understandable definition of SBOL. This ontology acts as a semantic layer for genetic circuit designs. As a result, computational tools can understand the meaning of design entities in addition to parsing structured SBOL data. SBOL-OWL not only describes how genetic circuits can be constructed computationally, it also facilitates the use of several existing Semantic Web tools for synthetic biology. This paper demonstrates some of these features, for example, to validate designs and check for inconsistencies. Through the use of SBOL-OWL, queries can be simplified and become more intuitive. Moreover, existing reasoners can be used to infer information about genetic circuit designs that cannot be directly retrieved using existing querying mechanisms. This ontological representation of the SBOL standard provides a new perspective to the verification, representation, and querying of information about genetic circuits and is important to incorporate complex design information via the integration of biological ontologies.


Assuntos
Redes Reguladoras de Genes/genética , Biologia Sintética/métodos , Humanos , Modelos Biológicos , Linguagens de Programação , Reprodutibilidade dos Testes , Semântica , Software
10.
ACS Synth Biol ; 8(8): 1818-1825, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31348656

RESUMO

Biological engineers often find it useful to communicate using diagrams. These diagrams can include information both about the structure of the nucleic acid sequences they are engineering and about the functional relationships between features of these sequences and/or other molecular species. A number of conventions and practices have begun to emerge within synthetic biology for creating such diagrams, and the Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard to organize, systematize, and extend such conventions in order to produce a coherent visual language. Here, we describe SBOL Visual version 2, which expands previous diagram standards to include new functional interactions, categories of molecular species, support for families of glyph variants, and the ability to indicate modular structure and mappings between elements of a system. SBOL Visual 2 also clarifies a number of requirements and best practices, significantly expands the collection of glyphs available to describe genetic features, and can be readily applied using a wide variety of software tools, both general and bespoke.


Assuntos
Linguagens de Programação , Biologia Sintética/métodos , Modelos Teóricos , Software
11.
ACS Synth Biol ; 7(2): 682-688, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29316788

RESUMO

The SynBioHub repository ( https://synbiohub.org ) is an open-source software project that facilitates the sharing of information about engineered biological systems. SynBioHub provides computational access for software and data integration, and a graphical user interface that enables users to search for and share designs in a Web browser. By connecting to relevant repositories (e.g., the iGEM repository, JBEI ICE, and other instances of SynBioHub), the software allows users to browse, upload, and download data in various standard formats, regardless of their location or representation. SynBioHub also provides a central reference point for other resources to link to, delivering design information in a standardized format using the Synthetic Biology Open Language (SBOL). The adoption and use of SynBioHub, a community-driven effort, has the potential to overcome the reproducibility challenge across laboratories by helping to address the current lack of information about published designs.


Assuntos
Bases de Dados Factuais , Linguagens de Programação , Biologia Sintética , Navegador
12.
J Integr Bioinform ; 15(1)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29605823

RESUMO

Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The synthetic biology open language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.2.0 of SBOL that builds upon version 2.1.0 published in last year's JIB special issue. In particular, SBOL 2.2.0 includes improved description and validation rules for genetic design provenance, an extension to support combinatorial genetic designs, a new class to add non-SBOL data as attachments, a new class for genetic design implementations, and a description of a methodology to describe the entire design-build-test-learn cycle within the SBOL data model.


Assuntos
Modelos Biológicos , Linguagens de Programação , Software , Biologia Sintética/normas , Animais , Guias como Assunto , Humanos , Transdução de Sinais
13.
ACS Synth Biol ; 6(7): 1150-1160, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28441476

RESUMO

As the Synthetic Biology Open Language (SBOL) data and visual standards gain acceptance for describing genetic designs in a detailed and reproducible way, there is an increasing need for an intuitive sequence editor tool that biologists can use that supports these standards. This paper describes SBOLDesigner 2, a genetic design automation (GDA) tool that natively supports both the SBOL data model (Version 2) and SBOL Visual (Version 1). This software is enabled to fetch and store parts and designs from SBOL repositories, such as SynBioHub. It can also import and export data about parts and designs in FASTA, GenBank, and SBOL 1 data format. Finally, it possesses a simple and intuitive user interface. This paper describes the design process using SBOLDesigner 2, highlighting new features over the earlier prototype versions. SBOLDesigner 2 is released freely and open source under the Apache 2.0 license.


Assuntos
Software , Biologia Sintética/métodos , Bases de Dados de Ácidos Nucleicos , Modelos Teóricos
14.
ACS Synth Biol ; 6(7): 1120-1123, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28173698

RESUMO

As protein engineering becomes more sophisticated, practitioners increasingly need to share diagrams for communicating protein designs. To this end, we present a draft visual language, Protein Language, that describes the high-level architecture of an engineered protein with easy-to-draw glyphs, intended to be compatible with other biological diagram languages such as SBOL Visual and SBGN. Protein Language consists of glyphs for representing important features (e.g., globular domains, recognition and localization sequences, sites of covalent modification, cleavage and catalysis), rules for composing these glyphs to represent complex architectures, and rules constraining the scaling and styling of diagrams. To support Protein Language we have implemented an extensible web-based software diagram tool, Protein Designer, that uses Protein Language in a "drag and drop" interface for visualization and computer-aided-design of engineered proteins, as well as conversion of annotated protein sequences to Protein Language diagrams and figure export. Protein Designer can be accessed at http://biocad.ncl.ac.uk/protein-designer/ .


Assuntos
Biologia Sintética/métodos , Desenho Assistido por Computador , Modelos Biológicos , Engenharia de Proteínas/métodos , Software
15.
ACS Synth Biol ; 5(8): 874-6, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-26808703

RESUMO

VisBOL is a Web-based application that allows the rendering of genetic circuit designs, enabling synthetic biologists to visually convey designs in SBOL visual format. VisBOL designs can be exported to formats including PNG and SVG images to be embedded in Web pages, presentations and publications. The VisBOL tool enables the automated generation of visualizations from designs specified using the Synthetic Biology Open Language (SBOL) version 2.0, as well as a range of well-known bioinformatics formats including GenBank and Pigeoncad notation. VisBOL is provided both as a user accessible Web site and as an open-source (BSD) JavaScript library that can be used to embed diagrams within other content and software.


Assuntos
Biologia Sintética/métodos , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Humanos , Internet , Linguagens de Programação , Software
16.
ACS Synth Biol ; 5(6): 487-97, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27268205

RESUMO

Recently, synthetic biologists have developed the Synthetic Biology Open Language (SBOL), a data exchange standard for descriptions of genetic parts, devices, modules, and systems. The goals of this standard are to allow scientists to exchange designs of biological parts and systems, to facilitate the storage of genetic designs in repositories, and to facilitate the description of genetic designs in publications. In order to achieve these goals, the development of an infrastructure to store, retrieve, and exchange SBOL data is necessary. To address this problem, we have developed the SBOL Stack, a Resource Description Framework (RDF) database specifically designed for the storage, integration, and publication of SBOL data. This database allows users to define a library of synthetic parts and designs as a service, to share SBOL data with collaborators, and to store designs of biological systems locally. The database also allows external data sources to be integrated by mapping them to the SBOL data model. The SBOL Stack includes two Web interfaces: the SBOL Stack API and SynBioHub. While the former is designed for developers, the latter allows users to upload new SBOL biological designs, download SBOL documents, search by keyword, and visualize SBOL data. Since the SBOL Stack is based on semantic Web technology, the inherent distributed querying functionality of RDF databases can be used to allow different SBOL stack databases to be queried simultaneously, and therefore, data can be shared between different institutes, centers, or other users.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Linguagens de Programação , Biologia Sintética , Bases de Dados Factuais , Editoração
17.
ACS Synth Biol ; 5(10): 1086-1097, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27110921

RESUMO

One aim of synthetic biologists is to create novel and predictable biological systems from simpler modular parts. This approach is currently hampered by a lack of well-defined and characterized parts and devices. However, there is a wealth of existing biological information, which can be used to identify and characterize biological parts, and their design constraints in the literature and numerous biological databases. However, this information is spread among these databases in many different formats. New computational approaches are required to make this information available in an integrated format that is more amenable to data mining. A tried and tested approach to this problem is to map disparate data sources into a single data set, with common syntax and semantics, to produce a data warehouse or knowledge base. Ontologies have been used extensively in the life sciences, providing this common syntax and semantics as a model for a given biological domain, in a fashion that is amenable to computational analysis and reasoning. Here, we present an ontology for applications in synthetic biology design, SyBiOnt, which facilitates the modeling of information about biological parts and their relationships. SyBiOnt was used to create the SyBiOntKB knowledge base, incorporating and building upon existing life sciences ontologies and standards. The reasoning capabilities of ontologies were then applied to automate the mining of biological parts from this knowledge base. We propose that this approach will be useful to speed up synthetic biology design and ultimately help facilitate the automation of the biological engineering life cycle.


Assuntos
Mineração de Dados , Bases de Dados Genéticas , Biologia Sintética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biologia Computacional , DNA Bacteriano/genética , Bases de Conhecimento , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA