Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 144(5): 675-88, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21376231

RESUMO

Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Toll-Like/imunologia
2.
PLoS Pathog ; 5(11): e1000671, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19956712

RESUMO

Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4(+) T lymphocytes compared to mice infected with Delta sseI S. typhimurium. Taken together, our results demonstrate that SseI inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria.


Assuntos
Proteínas de Bactérias/fisiologia , Movimento Celular , Interações Hospedeiro-Patógeno , Proteínas de Membrana/fisiologia , Infecções por Salmonella/etiologia , Salmonella enterica/patogenicidade , Animais , Células Dendríticas/microbiologia , Células Dendríticas/fisiologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Camundongos , Baço/imunologia , Fatores de Tempo
3.
Cancer Res ; 65(14): 6097-104, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16024610

RESUMO

When nitric oxide (NO) is produced at micromolar concentrations, as during inflammation, exposure to surrounding cells is potentially cytotoxic. The NO-dependent signaling pathways that initiate cell death are thought to involve the tumor suppressor protein p53, but the degree to which this factor contributes to NO-induced cell death is less clear. Various reports either confirm or negate a role for p53 depending on the cell type and NO donor used. In this study, we have used several pairs of cell lines whose only differences are the presence or absence of p53, and we have treated these cell lines with the same NO donor, spermineNONOate (SPER/NO). Treatment with SPER/NO induced such apoptotic markers as DNA fragmentation, nuclear condensation, poly(ADP-ribose) polymerase cleavage, cytochrome c release, and Annexin V staining. p53 was required for at least 50% of SPER/NO-induced apoptotic cell death in human lymphoblastoid cells and for almost all in primary and E1A-tranformed mouse embryonic fibroblasts, which highlights the possible importance of DNA damage for apoptotic signaling in fibroblasts. In contrast, p53 did not play a significant role in NO-induced necrosis. NO treatment also induced the phosphorylation of p53 at Ser15; pretreatment with phosphoinositide-3 kinase (PI3K) family inhibitors, wortmannin, LY294002, and caffeine, blocked such phosphorylation, but the p38 mitogen-activated protein kinase inhibitor, SB203580, did not. Pretreatment with the PI3K family inhibitors also led to a switch from NO-induced apoptosis to necrosis, which implicates a PI3K-related kinase such as ataxia telangiectasia mutated (ATM) or ATR (ATM and Rad3 related) in p53-dependent NO-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Fibroblastos/citologia , Linfócitos/citologia , Óxido Nítrico/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Imidazóis/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/fisiologia , Camundongos , Necrose , Doadores de Óxido Nítrico/farmacologia , Óxidos de Nitrogênio , Fosforilação , Piridinas/farmacologia , Espermina/análogos & derivados , Espermina/farmacologia , Transcrição Gênica , Proteína Supressora de Tumor p53/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Integr Biol (Camb) ; 6(4): 438-49, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24599496

RESUMO

Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration.


Assuntos
Movimento Celular/imunologia , Quimiocina CCL19/imunologia , Células Dendríticas/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Fatores de Virulência/imunologia , Animais , Células Dendríticas/microbiologia , Interações Hospedeiro-Patógeno , Camundongos , Camundongos da Linhagem 129 , Microfluídica , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Salmonella typhimurium/genética , Deleção de Sequência/imunologia , Estatísticas não Paramétricas , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA