RESUMO
The mnemonic discrimination task (MDT) is a widely used cognitive assessment tool. Performance in this task is believed to indicate an age-related deficit in episodic memory stemming from a decreased ability to pattern-separate among similar experiences. However, cognitive processes other than memory ability might impact task performance. In this study, we investigated whether nonmnemonic decision-making processes contribute to the age-related deficit in the MDT. We applied a hierarchical Bayesian version of the Ratcliff diffusion model to the MDT performance of 26 younger and 31 cognitively normal older adults. It allowed us to decompose decision behavior in the MDT into different underlying cognitive processes, represented by specific model parameters. Model parameters were compared between groups, and differences were evaluated using the Bayes factor. Our results suggest that the age-related decline in MDT performance indicates a predominantly mnemonic deficit rather than differences in nonmnemonic decision-making processes. In addition, this mnemonic deficit might also involve a slowing in processes related to encoding and retrieval strategies, which are relevant for successful memory as well. These findings help to better understand what cognitive processes contribute to the age-related decline in MDT performance and may help to improve the diagnostic value of this popular task.
Assuntos
Memória Episódica , Teorema de Bayes , Técnicas de Apoio para a DecisãoRESUMO
Mnemonic discrimination, a cognitive process that relies on hippocampal pattern separation, is one of the first memory domains to decline in aging and preclinical Alzheimer's disease. We tested whether functional connectivity (FC) within the entorhinal-hippocampal circuit, measured with high-resolution resting state fMRI, is associated with mnemonic discrimination and amyloid-ß (Aß) pathology in a sample of 64 cognitively normal human older adults (mean age, 71.3 ± 6.4 years; 67% female). FC was measured between entorhinal-hippocampal circuit nodes with known anatomical connectivity, as well as within cortical memory networks. Aß pathology was measured with 18F-florbetapir-PET, and neurodegeneration was assessed with subregional volume from structural MRI. Participants performed both object and spatial versions of a mnemonic discrimination task outside of the scanner and were classified into low-performing and high-performing groups on each task using a median split. Low object mnemonic discrimination performance was specifically associated with increased FC between anterolateral entorhinal cortex (alEC) and dentate gyrus (DG)/CA3, supporting the importance of this connection to object memory. This hyperconnectivity between alEC and DG/CA3 was related to Aß pathology and decreased entorhinal cortex volume. In contrast, spatial mnemonic discrimination was not associated with altered FC. Aß was further associated with dysfunction within hippocampal subfields, particularly with decreased FC between CA1 and subiculum as well as reduced volume in these regions. Our findings suggest that Aß may indirectly lead to memory impairment through entorhinal-hippocampal circuit dysfunction and neurodegeneration and provide a mechanism for increased vulnerability of object mnemonic discrimination.SIGNIFICANCE STATEMENT Mnemonic discrimination is a critical episodic memory process that is performed in the dentate gyrus (DG) and CA3 subfield of the hippocampus, relying on input from entorhinal cortex. Mnemonic discrimination is particularly vulnerable to decline in older adults; however, the mechanisms behind this vulnerability are still unknown. We demonstrate that object mnemonic discrimination impairment is related to hyperconnectivity between the anterolateral entorhinal cortex and DG/CA3. This hyperconnectivity was associated with amyloid-ß pathology and neurodegeneration in entorhinal cortex, suggesting aberrantly increased network activity is a pathological process. Our findings provide a mechanistic explanation of the vulnerability of object compared to spatial mnemonic discrimination in older adults and has translational implications for choice of outcome measures in clinical trials for Alzheimer's disease.
Assuntos
Doença de Alzheimer , Memória Episódica , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Hipocampo/metabolismo , Córtex Entorrinal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: Inflammatory responses play key roles in the development and progression of many pathological conditions, including neurodegenerative diseases. Accurate quantification of inflammatory factors in saliva would be highly advantageous, given its convenience and non-invasive nature, especially in elderly populations. METHODS: In this study, we measured levels of 10 cytokines, and the pro-inflammatory factor, YKL-40, in plasma and saliva samples from a cohort of nondemented older adults (n = 71; 62% female; 70.3 ± 6.4 years) using sensitive electrochemiluminescence-based immunoassays. RESULTS: We found that the mean levels of all cytokines were higher in saliva compared to plasma and that strong sex differences were observed for both saliva and plasma cytokines in this population. Comparing each cytokine between the two biofluids, we found that levels of interferon-gamma (IFNγ), interleukin (IL)-6 and tumor necrosis factor-alpha (TNFα) in blood were significantly correlated with their respective levels in saliva. We further observed that levels of these cytokines in blood were significantly correlated with additional cytokines in saliva, including IL-1ß, IL-10, IL-8, IL12p70 and IL-13. CONCLUSIONS: These findings show that inflammatory markers in saliva are associated with those found in circulation, suggesting shared inflammatory mechanisms between these two fluids. The higher levels of cytokines measured in saliva suggest that it might represent a better peripheral fluid to gauge inflammatory processes. Finally, our findings of robust sex differences in several salivary cytokines could have important implications for their potential use as disease biomarkers in the elderly and might be related to sex differences in the prevalence of age-related conditions.
Assuntos
Citocinas , Saliva , Feminino , Humanos , Masculino , Idoso , Interleucina-6 , Fator de Necrose Tumoral alfa , BiomarcadoresRESUMO
Medial temporal lobe (MTL) atrophy is a core feature of age-related cognitive decline and Alzheimer's disease (AD). While regional volumes and thickness are often used as a proxy for neurodegeneration, they lack the sensitivity to serve as an accurate diagnostic test and indicate advanced neurodegeneration. Here, we used a submillimeter resolution diffusion weighted MRI sequence (ZOOMit) to quantify microstructural properties of hippocampal subfields in older adults (63-98 years old) using tensor derived measures: fractional anisotropy (FA) and mean diffusivity (MD). We demonstrate that the high-resolution sequence, and not a standard resolution sequence, identifies dissociable profiles for CA1, dentate gyrus (DG), and the collateral sulcus. Using ZOOMit, we show that advanced age is associated with increased MD of the CA1 and DG as well as decreased FA of the DG. Increased MD of the DG, reflecting decreased cellular density, mediated the relationship between age and word list recall. Further, increased MD in the DG, but not DG volume, was linked to worse spatial pattern separation. Our results demonstrate that ultrahigh-resolution diffusion imaging enables the detection of microstructural differences in hippocampal subfield integrity and will lead to novel insights into the mechanisms of age-related memory loss.
Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Atrofia , Giro Denteado/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Lobo TemporalRESUMO
Alterations in white matter integrity have been demonstrated in a number of psychiatric disorders involving emotional disruptions. One such pathway - the uncinate fasciculus - connects the orbitofrontal cortex (OFC) to the medial temporal lobes (MTL) and has been associated with early life adversity, maltreatment, anxiety, and depression. While it is purported to play a role in episodic memory and discrimination, its exact function remains poorly understood. We have previously described the role of the amygdala and dentate (DG)/CA3 fields of the hippocampus in the mnemonic discrimination of emotional experiences (i.e. emotional pattern separation). However, how this computation may be modulated by connectivity with the orbitofrontal cortex remains unknown. Here we asked if the uncinate fasciculus plays a role in influencing MTL subregional activity during emotional pattern separation. By combining diffusion imaging with high-resolution fMRI, we found that reduced integrity of the UF is related to elevated BOLD fMRI activation of the DG/CA3 subregions of the hippocampus during emotional lure discrimination. We additionally report that higher levels of DG/CA3 activity are associated with poorer memory performance, suggesting that greater activation in this network (possibly driven by CA3 recurrent collaterals) is associated with memory errors. Based on this work we suggest that the UF is one pathway that may allow the OFC to exert control on this network and improve discrimination of emotional experiences, although further work is necessary to fully evaluate this possibility. This work provides novel insight into the role of prefrontal interactions with the MTL, particularly in the context of emotional memory.
Assuntos
Região CA3 Hipocampal/fisiologia , Emoções/fisiologia , Hipocampo/fisiologia , Fascículo Uncinado/fisiologia , Região CA3 Hipocampal/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Neuroimagem Funcional , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fascículo Uncinado/diagnóstico por imagem , Adulto JovemRESUMO
BACKGROUND: Anhedonia stands as a life-threatening transdiagnostic feature of many mental illnesses, most notably major depression and involves neural circuits for processing reward information. The paraventricular nucleus of the thalamus (PVT) is associated with reward-seeking behavior, however, links between the PVT circuit and anhedonia have not been investigated in humans. METHODS: In a sample of adults with and without psychiatric symptoms (n = 75, 18-41 years, 55 female), we generated an anhedonia factor score for each participant using a latent factor analysis, utilizing data from depression and anxiety assessments. Functional connectivity between the PVT and the nucleus accumbens (NAc) was calculated from high-resolution (1.5 mm) resting state fMRI. RESULTS: Anhedonia factor scores showed a positive relationship with functional connectivity between the PVT and the NAc, principally in males and in those with psychiatric symptoms. In males, connectivity between other midline thalamic nuclei and the NAc did not show these relationships, suggesting that this link may be specific to PVT. LIMITATIONS: This cohort was originally recruited to study depression and not anhedonia per se. The distribution of male and female participants in our cohort was not equal. Partial acquisition in high-resolution fMRI scans restricted regions of interest outside of the thalamus and reward networks. CONCLUSIONS: We report evidence that anhedonia is associated with enhanced functional connectivity between the PVT and the NAc, regions that are relevant to reward processing. These results offer clues as to the potential prevention and prevention and treatment of anhedonia.
Assuntos
Anedonia , Imageamento por Ressonância Magnética , Núcleo Accumbens , Humanos , Núcleo Accumbens/fisiopatologia , Núcleo Accumbens/diagnóstico por imagem , Anedonia/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Núcleos da Linha Média do Tálamo/fisiopatologia , Núcleos da Linha Média do Tálamo/fisiologia , Adolescente , Recompensa , Vias Neurais/fisiopatologia , Depressão/fisiopatologia , Depressão/diagnóstico por imagemRESUMO
The amyloid beta (Aß) 42/40 ratio has been widely studied as a biomarker in Alzheimer's disease (AD); however, other Aß peptides could also represent relevant biomarkers. We measured levels of Aß38/40/42 in plasma samples from cognitively-unimpaired older adults and determined the relationships between Aß levels and amyloid positron-emission-tomography (PET) and performance on a learning and memory task. We found that all Aß peptides individually and the Aß42/40 ratio, but not the Aß42/38 ratio, were significantly correlated with brain amyloid (Aß-PET). Multiple linear modeling, adjusting for age, sex, education, APOE4 and Aß-PET showed significant associations between the Aß42/38 ratio and memory. Further, associations between the Aß42/38 ratio and learning scores were stronger in males and in Aß-PET-negative individuals. In contrast, no significant associations were detected between the Aß42/40 ratio and any learning measure. These studies implicate the Aß42/38 ratio as a biomarker to assess early memory deficits and underscore the utility of the Aß38 fragment as an important biomarker in the AD field.
Assuntos
Peptídeos beta-Amiloides , Biomarcadores , Transtornos da Memória , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons , Humanos , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Masculino , Feminino , Idoso , Transtornos da Memória/sangue , Transtornos da Memória/etiologia , Transtornos da Memória/diagnóstico , Fragmentos de Peptídeos/sangue , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Cognição/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Memória , Aprendizagem/fisiologiaRESUMO
Cerebral amyloid-beta (Aß) accumulation, a hallmark pathology of Alzheimer's disease (AD), precedes clinical impairment by two to three decades. However, it is unclear whether Aß contributes to subtle memory deficits observed during the preclinical stage. The heterogenous emergence of Aß deposition may selectively impact certain memory domains, which rely on distinct underlying neural circuits. In this context, we tested whether specific domains of mnemonic discrimination, a neural computation essential for episodic memory, exhibit specific deficits related to early Aß deposition. We tested 108 cognitively unimpaired human older adults (66% female) who underwent 18F-florbetapir positron emission tomography (Aß-PET), and a control group of 35 young adults, on a suite of mnemonic discrimination tasks taxing object, spatial, and temporal domains. We hypothesized that Aß pathology would be selectively associated with temporal discrimination performance due to Aß's propensity to accumulate in the basal frontotemporal cortex, which supports temporal processing. Consistent with this hypothesis, we found a dissociation in which generalized age-related deficits were found for object and spatial mnemonic discrimination, while Aß-PET levels were selectively associated with deficits in temporal mnemonic discrimination. Further, we found that higher Aß-PET levels in medial orbitofrontal and inferior temporal cortex, regions supporting temporal processing, were associated with greater temporal mnemonic discrimination deficits, pointing to the selective vulnerability of circuits related to temporal processing early in AD progression. These results suggest that Aß accumulation within basal frontotemporal regions may disrupt temporal mnemonic discrimination in preclinical AD, and may serve as a sensitive behavioral biomarker of emerging AD progression.
RESUMO
INTRODUCTION: Virtually all people with Down syndrome (DS) develop neuropathology associated with Alzheimer's disease (AD). Atrophy of the hippocampus and entorhinal cortex (EC), as well as elevated plasma concentrations of neurofilament light chain (NfL) protein, are markers of neurodegeneration associated with late-onset AD. We hypothesized that hippocampus and EC gray matter loss and increased plasma NfL concentrations are associated with memory in adults with DS. METHODS: T1-weighted structural magnetic resonance imaging (MRI) data were collected from 101 participants with DS. Hippocampus and EC volume, as well as EC subregional cortical thickness, were derived. In a subset of participants, plasma NfL concentrations and modified Cued Recall Test scores were obtained. Partial correlation and mediation were used to test relationships between medial temporal lobe (MTL) atrophy, plasma NfL, and episodic memory. RESULTS: Hippocampus volume, left anterolateral EC (alEC) thickness, and plasma NfL were correlated with each other and were associated with memory. Plasma NfL mediated the relationship between left alEC thickness and memory as well as hippocampus volume and memory. DISCUSSION: The relationship between MTL gray matter and memory is mediated by plasma NfL levels, suggesting a link between neurodegenerative processes underlying axonal injury and frank gray matter loss in key structures supporting episodic memory in people with DS.
RESUMO
Adults with Down syndrome are less likely to have hypertension than neurotypical adults. However, whether blood pressure measures are associated with brain health and clinical outcomes in this population has not been studied in detail. Here, we assessed whether pulse pressure is associated with markers of cerebrovascular disease and is linked to a diagnosis of dementia in adults with Down syndrome via structural imaging markers of cerebrovascular disease and atrophy. The study included participants with Down syndrome from the Alzheimer's Disease - Down Syndrome study (n = 195, age = 50.6 ± 7.2 years, 44% women, 18% diagnosed with dementia). Higher pulse pressure was associated with greater global, parietal and occipital white matter hyperintensity volume but not with enlarged perivascular spaces, microbleeds or infarcts. Using a structural equation model, we found that pulse pressure was associated with greater white matter hyperintensity volume, which in turn was related to increased neurodegeneration, and subsequent dementia diagnosis. Pulse pressure is an important determinant of brain health and clinical outcomes in individuals with Down syndrome despite the low likelihood of frank hypertension.
RESUMO
INTRODUCTION: Diffusion tensor imaging has been used to assess white matter (WM) changes in the early stages of Alzheimer's disease (AD). However, the tensor model is necessarily limited by its assumptions. Neurite Orientation Dispersion and Density Imaging (NODDI) can offer insights into microstructural features of WM change. We assessed whether NODDI more sensitively detects AD-related changes in medial temporal lobe WM than traditional tensor metrics. METHODS: Standard diffusion and NODDI metrics were calculated for medial temporal WM tracts from 199 older adults drawn from ADNI3 who also received PET to measure pathology and neuropsychological testing. RESULTS: NODDI measures in medial temporal tracts were more strongly correlated to cognitive performance and pathology than standard measures. The combination of NODDI and standard metrics exhibited the strongest prediction of cognitive performance in random forest analyses. CONCLUSIONS: NODDI metrics offer additional insights into contributions of WM degeneration to cognitive outcomes in the aging brain.
RESUMO
Introduction: We tested whether Alzheimer's disease (AD) pathology predicts memory deficits in non-demented older adults through its effects on medial temporal lobe (MTL) subregional volume. Methods: Thirty-two, non-demented older adults with cerebrospinal fluid (CSF) (amyloid-beta [Aß]42/Aß40, phosphorylated tau [p-tau]181, total tau [t-tau]), positron emission tomography (PET; 18F-florbetapir), high-resolution structural magnetic resonance imaging (MRI), and neuropsychological assessment were analyzed. We examined relationships between biomarkers and a highly granular measure of memory consolidation, retroactive interference (RI). Results: Biomarkers of AD pathology were related to RI. Dentate gyrus (DG) and CA3 volume were uniquely associated with RI, whereas CA1 and BA35 volume were related to both RI and overall memory recall. AD pathology was associated with reduced BA35, CA1, and subiculum volume. DG volume and Aß were independently associated with RI, whereas CA1 volume mediated the relationship between AD pathology and RI. Discussion: Integrity of distinct hippocampal subfields demonstrate differential relationships with pathology and memory function, indicating specificity in vulnerability and contribution to different memory processes.
RESUMO
Older adults may harbor large amounts of amyloid-ß (Aß) pathology, yet still perform at age-normal levels on memory assessments. We tested whether functional brain networks confer resilience or compensatory mechanisms to support memory in the face of Aß pathology. Sixty-five cognitively normal older adults received high-resolution resting state fMRI to assess functional networks, 18F-florbetapir-PET to measure Aß, and a memory assessment. We characterized functional networks with graph metrics of local efficiency (information transfer), modularity (specialization of functional modules), and small worldness (balance of integration and segregation). There was no difference in functional network measures between older adults with high Aß (Aß+) compared to those with no/low Aß (Aß-). However, in Aß+ older adults, increased local efficiency, modularity, and small worldness were associated with better memory performance, while this relationship did not occur Aß- older adults. Further, the association between increased local efficiency and better memory performance in Aß+ older adults was localized to local efficiency of the default mode network and hippocampus, regions vulnerable to Aß and involved in memory processing. Our results suggest functional networks with modular and efficient structures are associated with resilience to Aß pathology, providing a functional target for intervention.
Assuntos
Transtornos da Memória , Memória , Humanos , Idoso , Transtornos da Memória/diagnóstico por imagem , Peptídeos beta-Amiloides , Benchmarking , Encéfalo/diagnóstico por imagemRESUMO
Alzheimer's disease (AD) is the most common type of dementia, characterized by early memory impairments and gradual worsening of daily functions. AD-related pathology, such as amyloid-beta (Aß) plaques, begins to accumulate many years before the onset of clinical symptoms. Predicting risk for AD via related pathology is critical as the preclinical stage could serve as a therapeutic time window, allowing for early management of the disease and reducing health and economic costs. Current methods for detecting AD pathology, however, are often expensive and invasive, limiting wide and easy access to a clinical setting. A non-invasive, cost-efficient platform, such as computerized cognitive tests, could be potentially useful to identify at-risk individuals as early as possible. In this study, we examined the diagnostic value of an episodic memory task, the mnemonic discrimination task (MDT), for predicting risk of cognitive impairment or Aß burden. We constructed a random forest classification algorithm, utilizing MDT performance metrics and various neuropsychological test scores as input features, and assessed model performance using area under the curve (AUC). Models based on MDT performance metrics achieved classification results with an AUC of 0.83 for cognitive status and an AUC of 0.64 for Aß status. Our findings suggest that mnemonic discrimination function may be a useful predictor of progression to prodromal AD or increased risk of Aß load, which could be a cost-efficient, noninvasive cognitive testing solution for potentially wide-scale assessment of AD pathological and cognitive risk.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Memória Episódica , Humanos , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Cognição , Disfunção Cognitiva/psicologia , Tomografia por Emissão de PósitronsRESUMO
White matter hyperintensities are a marker of small vessel cerebrovascular disease that are strongly related to cognition in older adults. Similarly, medial temporal lobe atrophy is well-documented in aging and Alzheimer's disease and is associated with memory decline. Here, we assessed the relationship between lobar white matter hyperintensities, medial temporal lobe subregional volumes, and hippocampal memory in older adults. We collected MRI scans in a sample of 139 older adults without dementia (88 females, mean age (SD) = 76.95 (10.61)). Participants were administered the Rey Auditory Verbal Learning Test (RAVLT). Regression analyses tested for associations among medial temporal lobe subregional volumes, regional white matter hyperintensities and memory, while adjusting for age, sex, and education and correcting for multiple comparisons. Increased occipital white matter hyperintensities were related to worse RAVLT delayed recall performance, and to reduced CA1, dentate gyrus, perirhinal cortex (Brodmann area 36), and parahippocampal cortex volumes. These medial temporal lobe subregional volumes were related to delayed recall performance. The association of occipital white matter hyperintensities with delayed recall performance was fully mediated statistically only by perirhinal cortex volume. These results suggest that white matter hyperintensities may be associated with memory decline through their impact on medial temporal lobe atrophy. These findings provide new insights into the role of vascular pathologies in memory loss in older adults and suggest that future studies should further examine the neural mechanisms of these relationships in longitudinal samples.
Assuntos
Doença de Alzheimer , Substância Branca , Feminino , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Memória de Longo Prazo , Atrofia/patologiaRESUMO
The perforant path, the white matter bundle connecting the entorhinal cortex (ERC) with the hippocampal formation deteriorates with age-related cognitive decline. Previous investigations using diffusion-weighted MRI to quantify perforant path integrity in-vivo have been limited due to image resolution or have quantified the perforant path using methods susceptible to partial volume effects such as the tensor model and without consideration of its 3-dimensional morphology. In this investigation, we use quantitative-anisotropy informed tractography derived from ultra-high resolution diffusion imaging (ZOOMit) to investigate structural connectivity of the perforant path and other medial temporal lobe (MTL) pathways in older adults (63 to 98 years old, n = 51). We show that graph density within the MTL declines with age and is associated with lower delayed recall performance. We also show that older age and poorer delayed recall are associated with reduced streamlines connecting the ERC and dentate gyrus of the hippocampus (the putative perforant path). This work suggest that intra-MTL connectivity may new candidate biomarkers for age-related cognitive decline.
Assuntos
Via Perfurante , Lobo Temporal , Humanos , Idoso , Idoso de 80 Anos ou mais , Lobo Temporal/diagnóstico por imagem , Memória , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Envelhecimento , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
Individuals with Down syndrome (DS) are less likely to have hypertension than neurotypical adults. However, whether blood pressure measures are associated with brain health and clinical outcomes in this population has not been studied in detail. Here, we assessed whether pulse pressure is associated with markers of cerebrovascular disease, entorhinal cortical atrophy, and diagnosis of dementia in adults with DS. Participants with DS from the Biomarkers of Alzheimer's Disease in Adults with Down Syndrome study (ADDS; n=195, age=50.6±7.2 years, 44% women, 18% diagnosed with dementia) were included. Higher pulse pressure was associated with greater global, parietal, and occipital WMH volume. Pulse pressure was not related to enlarged PVS, microbleeds, infarcts, entorhinal cortical thickness, or dementia diagnosis. However, in a serial mediation model, we found that pulse pressure was indirectly related to dementia diagnosis through parieto-occipital WMH and, subsequently through entorhinal cortical thickness. Higher pulse pressure may be a risk factor for dementia in people with DS by promoting cerebrovascular disease, which in turn affects neurodegeneration. Pulse pressure is an important determinant of brain health and clinical outcomes in individuals with Down syndrome despite the low likelihood of frank hypertension.
RESUMO
A child's death is a profound loss for mothers and affects hundreds of thousands of women. Mothers report inconsolable and progressive grief that is distinct from depression and impacts daily emotions and functions. The brain mechanisms responsible for this relatively common and profound mental health problem are unclear, hampering its clinical recognition and care. In an initial exploration of this condition, we used resting state functional MRI (fMRI) scans to examine functional connectivity in key circuits, and task-based fMRI to examine brain network activity in grieving mothers in response to pictures of their deceased child and as well as recognizable deceased celebrities and unfamiliar individuals. We compared nine mothers who had lost an adult child and aged-matched control mothers with a living child of a similar age. Additionally, we collected diffusion imaging scans to probe structural connectivity and complemented the imaging studies with neuropsychological assessments. Increased functional activation in Ventral Attention/Salience Networks accompanied by a reduced activation in the medial prefrontal cortex in response to the deceased child's picture robustly distinguished the grieving mothers from controls. Heightened resting-state functional connectivity between the paraventricular thalamic nucleus (PVT) and the amygdala distinguished the grieving mothers from the controls and correlated with subjective grief severity. Structurally, maternal grief and its severity were associated with alterations in corticolimbic white matter tracts. Finally, grieving mothers performed worse than controls on neuropsychological tests of learning, memory, and executive function, linked with grief severity. Reduced activation in cortical regions inhibiting emotions and changes in the PVT circuitry-a region involved in long-term emotional memories and decision making under conflict-distinguish grieving mothers from controls. Notably, the magnitude of neurobiological changes correlates with the subjective severity of grief. Together, these new discoveries delineate a prevalent and under-recognized mental health syndrome and chart a path for its appreciation and care.
RESUMO
BACKGROUND: Major Depressive Disorder, characterized by cognitive affective biases, is a considerable public health challenge. Past work has shown that higher depressive symptoms are associated with augmented memory of negative stimuli. In contrast, anxiety symptoms have been associated with overgeneralization of emotional memories. Given the high comorbidity of depression and anxiety, it is critical to understand how cognitive affective biases are differentially associated with clinical symptoms. METHOD: We used continuous measures of depression (Beck Depression Inventory [BDI-II]) and anxiety (Beck Anxiety Inventory [BAI]) to evaluate an adult sample (N = 79; 18-41 years old, 58 female). Emotional memory discrimination and recognition memory were tested using an emotional discrimination task. We applied exploratory factor analysis to questions from the BAI and BDI-II to uncover latent constructs consisting of negative affect, anhedonia, somatic anxiety, and cognitive anxiety. RESULTS: We report evidence that anxious symptoms were associated with impaired recognition of negative items after accounting for age and sex. Our exploratory factor analysis revealed that impaired negative item recognition is largely associated with somatic and cognitive anxiety factors. LIMITATIONS: Interpretations in a mixed pathology sample, especially given collinearity among factors, may be difficult. CONCLUSIONS: We provide evidence that somatic and cognitive anxiety are related to impaired recognition memory for negative stimuli. Future clinical investigations should uncover the neurobiological basis supporting the link between recognition of negative stimuli and somatic/cognitive symptoms of anxiety.