Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674555

RESUMO

Cancer cells present high levels of oxidative stress, and although an increase in reactive oxygen species (ROS), such as H2O2, can lead to apoptosis, it can also induce cell invasion and metastasis. As the increase in ROS can lead to an increase in the expression of MMP-2 and MMP-9, thus causing the degradation of the extracellular matrix, an increase in the ROS H2O2 might have an impact on MMP-2/MMP-9 activity. The natural compound curcumin has shown some anticancer effects, although its bioavailability hinders its therapeutic potential. However, curcumin and its analogues were shown to resensitize kidney cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. This study shows that the curcuminoid EF24 in combination with TRAIL increases peroxidase activity in the renal adenocarcinoma cell line ACHN, reducing the level of intracellular H2O2 and MMP-2/MMP-9 activity, a mechanism that is also observed after treatment with curcumin and TRAIL.


Assuntos
Carcinoma de Células Renais , Curcumina , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Curcumina/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Peróxido de Hidrogênio/farmacologia , Diarileptanoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 2 da Matriz , Linhagem Celular Tumoral , Apoptose , Neoplasias Renais/tratamento farmacológico , Movimento Celular
2.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076967

RESUMO

Targeted therapies are the most attractive options in the treatment of different tumours, including kidney cancers. Such therapies have entered a golden era due to advancements in research, breakthroughs in scientific knowledge, and a better understanding of cancer therapy mechanisms, which significantly improve the survival rates and life expectancy of patients. The use of tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) as an anticancer therapy has attracted the attention of the scientific community and created great excitement due to its selectivity in targeting cancerous cells with no toxic impacts on normal tissues. However, clinical studies disappointingly showed the emergence of resistance against TRAIL. This study aimed to employ curcumin to sensitise TRAIL-resistant kidney cancerous ACHN cells, as well as to gain insight into the molecular mechanisms of TRAIL sensitization. Curcumin deregulated the expression of apoptosis-regulating micro Ribonucleic Acid (miRNAs), most notably, let-7C. Transfecting ACHN cells with a let-7C antagomir significantly increased the expression of several cell cycle protein, namely beta (ß)-catenin, cyclin dependent kinase (CDK)1/2/4/6 and cyclin B/D. Further, it overexpressed the expression of the two key glycolysis regulating proteins including hypoxia-inducible factor 1-alpha (HIF-1α) and pyruvate dehydrogenase kinase 1 (PDK1). Curcumin also suppressed the expression of the overexpressed proteins when added to the antagomir transfected cells. Overall, curcumin targeted ACHN cell cycle and cellular metabolism by promoting the differential expression of let-7C. To the best of our knowledge, this is the first study to mechanistically report the cancer chemosensitisation potential of curcumin in kidney cancer cells via induction of let-7C.


Assuntos
Curcumina , Antagomirs , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Curcumina/farmacologia , Humanos , Rim , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
3.
Molecules ; 26(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684883

RESUMO

The natural compound curcumin has been shown to have therapeutic potential against a wide range of diseases such as cancer. Curcumin reduces cell viability of renal cell carcinoma (RCC) cells when combined with TNF-related apoptosis-inducing ligand (TRAIL), a cytokine that specifically targets cancer cells, by helping overcome TRAIL resistance. However, the therapeutic effects of curcumin are limited by its low bioavailability. Similar compounds to curcumin with higher bioavailability, such as demethoxycurcumin (DMC) and 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), can potentially have similar anticancer effects and show a similar synergy with TRAIL, thus reducing RCC viability. This study aims to show the effects of DMC and EF24 in combination with TRAIL at reducing ACHN cell viability and ACHN cell migration. It also shows the changes in death receptor 4 (DR4) expression after treatment with these compounds individually and in combination with TRAIL, which can play a role in their mechanism of action.


Assuntos
Compostos de Benzilideno/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Diarileptanoides/farmacologia , Neoplasias Renais/tratamento farmacológico , Piperidonas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Apoptose , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Movimento Celular , Quimioterapia Combinada , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Células Tumorais Cultivadas
4.
Clin Exp Pharmacol Physiol ; 45(11): 1149-1160, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29924417

RESUMO

Nitric oxide (NO) has been shown to play an important role in renal physiology and pathophysiology partly through its influence on various transport systems in the kidney proximal tubule. The role of NO in kidney dysfunction associated with lysosomal storage disorder, cystinosis, is largely unknown. In the present study, the effects of inducible nitric oxide synthase (iNOS)-specific inhibitor, 1400W, on Na+ ,K+ -ATPase activity and expression, mitochondrial integrity and function, nutrient metabolism, and apoptosis were investigated in Ctns null proximal tubular epithelial cells (PTECs). Ctns null PTECs exhibited an increase in iNOS expression, augmented NO and nitrite/nitrate production, and reduced Na+ ,K+ -ATPase expression and activity. In addition, these cells displayed depolarized mitochondria, reduced adenosine triphosphate content, altered nutrient metabolism, and elevated apoptosis. Treatment of Ctns null PTECs with 1400W abolished these effects which culminated in the mitigation of apoptosis in these cells. These findings indicate that uncontrolled NO production may constitute the upstream event that leads to the molecular and biochemical alterations observed in Ctns null PTECs and may explain, at least in part, the generalized proximal tubular dysfunction associated with cystinosis. Further studies are needed to realize the potential benefits of anti-nitrosative therapies in improving renal function and/or attenuating renal injury in cystinosis.


Assuntos
Amidinas/farmacologia , Benzilaminas/farmacologia , Células Epiteliais/efeitos dos fármacos , Técnicas de Inativação de Genes , Túbulos Renais Proximais/citologia , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Camundongos , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Nutrientes/metabolismo , Estresse Oxidativo/efeitos dos fármacos
5.
J Physiol ; 594(12): 3353-70, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26915455

RESUMO

KEY POINTS: Cystine is a disulphide amino acid that is normally generated in the lysosomes by the breakdown of cystine-containing proteins. Previously, we demonstrated that lysosomal cystine accumulation in kidney proximal tubular epithelial cells (PTECs) dramatically reduced glutathione (GSH) levels, which may result in the disruption of cellular redox balance. In the present study, we show that lysosomal cystine accumulation following CTNS gene silencing in kidney PTECs resulted in elevated intracellular reactive oxygen species production, reduced antioxidant capacity, induction of redox-sensitive proteins, altered mitochondrial integrity and augmented cell death. These alterations may represent different facets of a unique cascade leading to tubular dysfunction initiated by lysosomal cystine accumulation and may present a clear disadvantage for cystinotic PTECs in vivo. Cystine depletion by cysteamine afforded cytoprotection in CTNS knockdown cells by reducing oxidative stress, normalizing intracellular GSH and ATP content, and preserving cell viability. ABSTRACT: Cystine is a disulphide amino acid that is normally generated within the lysosomes through lysosomal-based protein degradation and via extracellular uptake of free cystine. In the autosomal recessive disorder, cystinosis, a defect in the CTNS gene results in excessive lysosomal accumulation of cystine, with early kidney failure a hallmark of the disease. Previously, we demonstrated that silencing of the CTNS gene in kidney proximal tubular epithelial cells (PTECs) resulted in an increase in intracellular cystine concentration coupled with a dramatic reduction in the total GSH content. Because of the crucial role of GSH in maintaining the redox status and viability of kidney PTECs, we assessed the effects of CTNS knockdown-induced lysosomal cystine accumulation on intracellular reactive oxygen species (ROS) production, activity of classical redox-sensitive genes, mitochondrial integrity and cell viability. Our results showed that lysosomal cystine accumulation increased ROS production and solicitation to oxidative stress (OS). This was associated with the induction of classical redox-sensitive proteins, NF-κB, NRF2, HSP32 and HSP70. Cystine-loaded PTECs also displayed depolarized mitochondria, reduced ATP content and augmented apoptosis. Treatment of CTNS knockdown PTECs with the cystine-depleting agent cysteamine resulted in the normalization of OS index, increased GSH and ATP content, and preservation of cell viability. Taken together, the alterations observed in cystinotic cells may represent different facets of a cascade leading to tubular dysfunction and, in combination with cysteamine therapy, may offer a novel link for the attenuation of renal injury and preservation of functions of other organs affected in cystinosis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistina/fisiologia , Túbulos Renais Proximais/citologia , Lisossomos/fisiologia , Mitocôndrias/fisiologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteamina/farmacologia , Cistina/metabolismo , Inativação Gênica , Glutationa/metabolismo , Humanos , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
J Physiol ; 593(23): 5167-82, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26482480

RESUMO

The pancreatic ß-cell has reduced antioxidant defences making it more susceptible to oxidative stress. In cystinosis, a lysosomal storage disorder, an altered redox state may contribute to cellular dysfunction. This rare disease is caused by an abnormal lysosomal cystine transporter, cystinosin, which causes excessive accumulation of cystine in the lysosome. Cystinosis associated kidney damage and dysfunction leads to the Fanconi syndrome and ultimately end-stage renal disease. Following kidney transplant, cystine accumulation in other organs including the pancreas leads to multi-organ dysfunction. In this study, a Ctns gene knockdown model of cystinosis was developed in the BRIN-BD11 rat clonal pancreatic ß-cell line using Ctns-targeting siRNA. Additionally there was reduced cystinosin expression, while cell cystine levels were similarly elevated to the cystinotic state. Decreased levels of chronic (24 h) and acute (20 min) nutrient-stimulated insulin secretion were observed. This decrease may be due to depressed ATP generation particularly from glycolysis. Increased ATP production and the ATP/ADP ratio are essential for insulin secretion. Oxidised glutathione levels were augmented, resulting in a lower [glutathione/oxidised glutathione] redox potential. Additionally, the mitochondrial membrane potential was reduced, apoptosis levels were elevated, as were markers of oxidative stress, including reactive oxygen species, superoxide and hydrogen peroxide. Furthermore, the basal and activated phosphorylated forms of the redox-sensitive transcription factor NF-κB were increased in cells with silenced Ctns. From this study, the cystinotic-like pancreatic ß-cell model demonstrated that the altered oxidative status of the cell, resulted in depressed mitochondrial function and pathways of ATP production, causing reduced nutrient-stimulated insulin secretion.


Assuntos
Trifosfato de Adenosina/metabolismo , Cistina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Estresse Oxidativo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Apoptose , Linhagem Celular , Exocitose , NF-kappa B/metabolismo , Ratos
7.
Nephrol Dial Transplant ; 30 Suppl 4: iv60-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26209740

RESUMO

The incidence of Type 2 diabetes is increasing rapidly worldwide, and understanding the mechanisms of its complications including diabetic nephropathy (DN) is important in the discovery of early biomarkers, understanding the causative mechanisms of its complications and identifying therapeutic targets. DN is characterized by glomerulosclerosis, tubulointerstitial fibrosis and tubular atrophy. The tubular component of the disease is important in progression of disease. In vitro models are a valuable alternative to animal studies and an effective way to explore mechanisms of human disease. Several proximal tubular cell lines have been used in studying mechanisms of DN. Key extracellular conditions that contribute to damage to the proximal tubule in DN include hyperglycaemia, proteinuria, and hypoxia and inflammation. According to current knowledge, these exert their effects through changes in transforming growth factor beta signalling, the renin-angiotensin system, dysregulation of pathways such as the polyol pathway, hexosamine pathway and protein kinase C pathway and through formation of advanced glycation end products. Studies in cell culture models have been instrumental in the delineation of these processes. However, all of the existing cell culture models have limitations including dedifferentiation. To bring research forward along with technological advances, such as major advances in 'omics' methodologies, a more suitable model is necessary. The RPTEC/TERT1 cell line is a promising alternative to previous proximal tubular epithelial cell lines due to features that resemble the cell type in vivo, such as its epithelial characteristics, maintenance of functional capabilities, glucose handling, expression of the primary cilium and transport activity including albumin. This cell line will facilitate identification of mechanisms of DN with potential to identify new therapeutic targets.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/etiologia , Modelos Animais de Doenças , Túbulos Renais Proximais/patologia , Animais , Diabetes Mellitus Tipo 2/complicações , Progressão da Doença , Humanos , Técnicas In Vitro
8.
Exp Physiol ; 98(10): 1505-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23813804

RESUMO

Using the cystine dimethylester (CDME) loading technique to achieve elevated lysosomal cystine levels, ATP depletion has previously been postulated to be responsible for the renal dysfunction in cystinosis, a genetic disorder characterized by an excessive accumulation of cystine in the lysosomes. However, this is unlikely to be the sole factor responsible for the complexity of cell stress associated with cystinosis. Moreover, CDME has been shown to induce a direct toxic effect on mitochondrial ATP generation. Using a human-derived proximal tubular epithelial cell line, we compared the effects of CDME loading with small interfering RNA-mediated cystinosin, lysosomal cystine transporter (CTNS) gene silencing on glutathione redox status, reactive oxygen species levels, oxidative stress index, antioxidant enzyme activities and ATP generating capacity. The CDME-loaded cells displayed increased total glutathione content, extensive superoxide depletion, augmented oxidative stress index, decreased catalase activity, normal superoxide dismutase activity and compromised ATP generation. In contrast, cells subjected to CTNS gene inhibition demonstrated decreased total glutathione content, increased superoxide levels, unaltered oxidative stress index, unaltered catalase activity, induction of superoxide dismutase activity and normal ATP generation. Our data indicate that many CDME-induced effects are independent of lysosomal cystine accumulation, which further underscores the limited value of CDME loading for studying the pathogenesis of cystinosis. CTNS gene inhibition, which results in intracellular cystine accumulation, is a more realistic approach for investigating biochemical alterations in cystinosis.


Assuntos
Trifosfato de Adenosina/metabolismo , Cistina/análogos & derivados , Sistemas de Transporte de Aminoácidos Neutros/genética , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cistina/metabolismo , Cistina/farmacologia , Inativação Gênica , Humanos , Túbulos Renais Proximais/citologia , Lisossomos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
9.
Int J Mol Sci ; 14(10): 19416-33, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24071941

RESUMO

Chemical carcinogens are substances which induce malignant tumours, increase their incidence or decrease the time taken for tumour formation. Often, exposure to chemical carcinogens results in tissue specific patterns of tumorigenicity. The very same anatomical, biochemical and physiological specialisations which permit the kidney to perform its vital roles in maintaining tissue homeostasis may in fact increase the risk of carcinogen exposure and contribute to the organ specific carcinogenicity observed with numerous kidney carcinogens. This review will address the numerous mechanisms which play a role in the concentration, bioactivation, and uptake of substances from both the urine and blood which significantly increase the risk of cancer in the kidney.


Assuntos
Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Carcinógenos/metabolismo , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/patologia , Animais , Carcinogênese/metabolismo , Humanos , Neoplasias Renais/metabolismo
10.
Am J Physiol Renal Physiol ; 302(8): F905-16, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22262483

RESUMO

The primary cilium is an immotile sensory and signaling organelle found on the majority of mammalian cell types. Of the multitude of roles that the primary cilium performs, perhaps some of the most important include maintenance of differentiation, quiescence, and cellular polarity. Given that the progression of cancer requires disruption of all of these processes, we have investigated the effects of several carcinogens on the primary cilium of the RPTEC/TERT1 human proximal tubular epithelial cell line. Using both scanning electron microscopy and immunofluorescent labeling of the ciliary markers acetylated tubulin and Arl13b, we confirmed that RPTEC/TERT1 cells express primary cilium upon reaching confluence. Treatment with the carcinogens ochratoxin A (OTA) and potassium bromate (KBrO(3)) caused a significant reduction in the number of ciliated cells, while exposure to nifedipine, a noncarcinogenic renal toxin, had no effect on primary cilium expression. Flow cytometric analysis of the effects of all three compounds on the cell cycle revealed that only KBrO(3) resulted in an increase in the proportion of cells entering the cell cycle. Microarray analysis revealed dysregulation of multiple pathways affecting ciliogenesis and ciliary maintenance following OTA and KBrO(3) exposure, which were unaffected by nifedipine exposure. The primary cilium represents a unique physical checkpoint with relevance to carcinogenesis. We have shown that the renal carcinogens OTA and KBrO(3) cause significant deciliation in a model of the proximal tubule. With KBrO(3), this was followed by reentry into the cell cycle; however, deciliation was not found to be associated with reentry into the cell cycle following OTA exposure. Transcriptomic analysis identified dysregulation of Wnt signaling and ciliary trafficking in response to OTA and KBrO(3) exposure.


Assuntos
Bromatos/toxicidade , Carcinógenos/toxicidade , Ciclo Celular/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Ocratoxinas/toxicidade , Fatores de Ribosilação do ADP/análise , Linhagem Celular , Cílios/efeitos dos fármacos , Cílios/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Imunofluorescência , Humanos , Túbulos Renais Proximais/ultraestrutura , Nifedipino/toxicidade , Transcriptoma/efeitos dos fármacos , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
11.
Arch Toxicol ; 86(11): 1741-51, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22760423

RESUMO

Potassium bromate (KBrO(3)) is an oxidising agent that has been widely used in the food and cosmetic industries. It has shown to be both a nephrotoxin and a renal carcinogen in in vivo and in vitro models. Here, we investigated the effects of KBrO(3) in the human and rat proximal tubular cell lines RPTEC/TERT1 and NRK-52E. A genome-wide transcriptomic screen was carried out from cells exposed to a sub-lethal concentration of KBrO(3) for 6, 24 and 72 h. Pathway analysis identified "glutathione metabolism", "Nrf2-mediated oxidative stress" and "tight junction (TJ) signalling" as the most enriched pathways. TJ signalling was less impacted in the rat model, and further studies revealed low transepithelial electrical resistance (TEER) and an absence of several TJ proteins in NRK-52E cells. In RPTEC/TERT1 cells, KBrO(3) exposure caused a decrease in TEER and resulted in altered expression of several TJ proteins. N-Acetylcysteine co-incubation prevented these effects. These results demonstrate that oxidative stress has, in conjunction with the activation of the cytoprotective Nrf2 pathway, a dramatic effect on the expression of tight junction proteins. The further understanding of the cross-talk between these two pathways could have major implications for epithelial repair, carcinogenesis and metastasis.


Assuntos
Bromatos/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Ratos , Junções Íntimas/metabolismo , Testes de Toxicidade
12.
Arch Toxicol ; 86(4): 571-89, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22124623

RESUMO

Ochratoxin A (OTA) is a widely studied compound due to its role in renal toxicity and carcinogenicity. However, there is still no consensus on the exact mechanisms of toxicity or carcinogenicity. In the current study, we analysed the effect of OTA on three human renal proximal tubular models (human primary, RPTEC/TERT1 and HK-2 cells) and two rat renal proximal tubular models (rat primary and NRK-52E cells). Global transcriptomics analysis at two exposure times was performed to generate a set of 756 OTA sensitive genes. This gene set was then compared in more detail across all models and additionally to a rat in vivo renal cortex model. The results demonstrate a well-conserved response across all models. OTA resulted in deregulation of a number of pathways including cytoskeleton, nucleosome regulation, translation, transcription, ubiquitination and cell cycle pathways. Interestingly, the oxidative stress activated Nrf2 pathway was not enriched. These results point to an epigenetic action of OTA, perhaps initiated by actin binding as the actin remodelling gene, advillin was the highest up-regulated in all models. The largest model differences were observed between the human and the rat in vitro models. However, since the human in vitro models were more similar to the rat in vivo model, it is more likely that these differences are model-specific rather than species-specific per se. This study demonstrates the usefulness of in vitro cell culture models combined with transcriptomic analysis for the investigation of mechanisms of toxicity and carcinogenicity. In addition, these results provide further evidence supporting a non-genotoxic mechanism of OTA-induced carcinogenicity.


Assuntos
Carcinógenos/toxicidade , DNA/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Micotoxinas/toxicidade , Ocratoxinas/toxicidade , Animais , Linhagem Celular , DNA/genética , Epigênese Genética/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Especificidade da Espécie , Testes de Toxicidade
13.
Am J Physiol Renal Physiol ; 301(6): F1281-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21880834

RESUMO

The immunosuppressant drugs cyclosporine A (CsA) and sirolimus (SRL) used in combination demonstrated beneficial effects in organ transplantation, but this combination can also result in increased adverse effects. We previously showed that not only CsA treatment but also its combination with SRL decreased paracellular permeability in renal proximal tubular cells by modification of the tight junction proteins, claudins, through ERK1/2 signaling pathway. In this present study, evidence is presented that not only CsA but also the combination of CsA/SRL may have adverse effects on the barrier function of renal proximal cells, at least in part, through the expression of the cytokine transforming growth factor (TGF)-ß(1). CsA treatment upregulated TGF-ß(1) gene expression and this upregulation was enhanced when CsA and SRL were applied together. Addition of TGF-ß(1) (5 ng/ml) altered the barrier function with increased transepithelial electrical resistance (TER) and claudin-1 expression. Use of a TGF-ß(1)-blocking antibody or blockage of TGF-ß(1) receptor kinase activity with SD208 prevented the CsA- and CsA/SRL-induced increase in TER. No evidence was found in the present studies to indicate that CsA or CsA/SRL treatment activated the TGF-ß(1) Smad canonical signaling pathway, whereas addition of TGF-ß(1) (5 ng/ml) did activate the Smad pathway. Addition of the ERK1/2 signaling inhibitor U0126 was able to prevent the TGF-ß(1)-mediated increase in TER and claudin expression. It is most likely that the CsA- and CsA/SRL-induced increases in TGF-ß(1) expression may not be sufficient to trigger the Smad pathway but however may trigger other TGF-ß(1) receptor-mediated signaling including the ERK1/2 signaling pathway.


Assuntos
Ciclosporina/farmacologia , Imunossupressores/farmacologia , Rim/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sirolimo/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Butadienos/farmacologia , Linhagem Celular , Claudina-1 , Impedância Elétrica , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Nitrilas/farmacologia , Pteridinas/farmacologia , Proteínas Smad/metabolismo , Suínos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética , Regulação para Cima
14.
Toxicol Appl Pharmacol ; 252(2): 201-10, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21354196

RESUMO

The calcineurin inhibitor cyclosporine A (CsA) is a widely used immunosuppressive agent. However, nephrotoxicity is a serious side effect observed in patients which limits clinical use of CsA. CsA nephrotoxicity is associated with tubulointerstitial injury progressing to nephropathy. This is typically diagnosed by invasive renal biopsy and is often only detected when the disease process is well advanced. Therefore identification of novel, early indicators of CsA nephrotoxicity could be clinically advantageous. This study aimed to establish a murine model of CsA nephrotoxicity and to identify urinary proteins that may indicate the onset of CsA-induced nephropathy using 2-D gel electrophoresis. CsA nephrotoxicity was induced in CD-1 mice by daily CsA administration for 4weeks. By week 4, elevated serum creatinine and proteinuria were observed after CsA treatment indicating significant renal dysfunction. Decreased cadherin-1, increased α-smooth muscle actin and fibroblast specific protein 1 in kidney tissue indicated disruption of normal tubular architecture. Alterations in podocin and uromodulin were also observed which may indicate damage to other segments of the nephron. Proteomic analysis of urine identified a number of differentially regulated proteins that may be involved in early CsA nephropathy including cadherin 1, superoxide dismutase and vinculin. These findings suggest novel mechanisms of CsA nephrotoxicity and identify novel potential markers of the disease.


Assuntos
Ciclosporina/toxicidade , Modelos Animais de Doenças , Nefrite/induzido quimicamente , Nefrite/patologia , Animais , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite Membranosa/induzido quimicamente , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Nefrite/metabolismo
15.
Am J Physiol Renal Physiol ; 298(3): F672-82, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19955189

RESUMO

Alteration of the tight junction complex in renal epithelial cells can affect renal barrier function and perturb normal kidney homeostasis. The immunosuppressant drugs cyclosporine A (CsA) and sirolimus (SRL) used in combination demonstrated beneficial effects in organ transplantation but this combination can also result in increased adverse effects. We previously showed that CsA treatment alone caused an alteration of the tight junction complex, resulting in changes in transepithelial permeability in Madin-Darby canine kidney distal tubular/collecting duct cells. The potential effect of SRL on transepithelial permeability in kidney cells is unknown. In this study, subcytotoxic doses of SRL or CsA were found to decrease the paracellular permeability of the porcine proximal tubular epithelial cells, LLC-PK1 cell monolayers, which was detected as an increase in transepithelial electrical resistance (TER). The cotreatment with SRL and CsA was found to increase TER in a synergistic manner. CsA treatment increased total cellular expression and membrane localization of the tight junction protein claudin-1 and this further increased with the combination of SRL/CsA. SRL and CsA treatment alone or in combination stimulated the phosphorylation of ERK1/2. The MEK-ERK1/2 pathway inhibitor, U0126, reduced the SRL, CsA, and CsA/SRL-induced increase in TER. U0126 also reduced the CsA and CsA/SRL-induced increase in the membrane localization of claudin-1. Alterations in claudin-2 and claudin-4 were also detected. However, the results suggest that the modulation in expression and localization of claudin-1 appears to be pivotal in the SRL- and CsA-induced modulation of the epithelial barrier function and that modulation is regulated by ERK1/2 signaling pathway.


Assuntos
Ciclosporina/toxicidade , Células Epiteliais/efeitos dos fármacos , Imunossupressores/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sirolimo/toxicidade , Animais , Butadienos/farmacologia , Claudina-1 , Claudina-4 , Sinergismo Farmacológico , Impedância Elétrica , Ativação Enzimática , Células Epiteliais/enzimologia , Túbulos Renais Proximais/enzimologia , Células LLC-PK1 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Permeabilidade , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Suínos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/enzimologia , Fatores de Tempo
16.
Am J Nephrol ; 32(6): 590-602, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21099216

RESUMO

BACKGROUND: high-mobility group box protein 1 (HMGB-1) is a chromatin-binding protein that bends DNA, thereby facilitating gene transcription. HMGB-1 has also been observed as an extracellular secreted protein in serum of patients with sepsis and has putative intracellular signalling effects regulating the production of interleukin-1 and tumour necrosis factor in a number of inflammatory conditions. METHODS: we established a model of immune-mediated epithelial-mesenchymal transition (EMT) in human proximal tubular epithelial cells (PTECs). PTECs were cultured with conditioned medium containing supernatant from activated peripheral blood mononuclear cells (aPBMCs). The model was characterized using phenotypic and transcriptomic approaches and suppression subtractive hybridisation was performed to identify differentially regulated genes. RESULTS: activation of PBMCs resulted in increased secretion of HMGB-1. In addition, treatment of PTECs with aPBMC-conditioned medium resulted in significant upregulation of HMGB-1 in PTECs. Direct treatment of PTECs with recombinant human HMGB-1 induced alterations in epithelial morphology consistent with EMT including reduced E-cadherin expression, increased α-smooth muscle actin expression and enhanced cell migration. HMGB-1 effects were mediated at least in part by the receptor for advanced glycation end products and through induction of transforming growth factor-ß(1) secretion from PTECs. CONCLUSIONS: these results suggest that HMGB-1 is a key mediator of immune-mediated EMT of PTECs and a potentially important signalling molecule in the development of renal fibrosis.


Assuntos
Células Epiteliais/imunologia , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/imunologia , Proteína HMGB1/genética , Proteína HMGB1/imunologia , Actinas/genética , Actinas/metabolismo , Análise de Variância , Caderinas/metabolismo , Movimento Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Junções Intercelulares/metabolismo , Túbulos Renais Proximais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Hibridização de Ácido Nucleico , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
17.
Biology (Basel) ; 9(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370057

RESUMO

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.

18.
Toxicol In Vitro ; 23(3): 486-99, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19159671

RESUMO

There is an acknowledged need to promote and further develop in vitro techniques in order to achieve the goal of improved risk assessment of chemicals and pharmaceuticals to humans. The EU 6th framework project "PREDICTOMICS" was established in order to contribute to the further development of in vitro toxicology, with a particular focus on emerging techniques including toxicogenomics. DNA microarray technology is being used more frequently in the in vitro field, however, only very few studies have assessed the reproducibility of this technique with respect to in vitro toxicology. To this end we conducted an interlaboratory comparison to test the reproducibility of transcriptomic changes induced by the immunosuppressive agent, Cyclosporine A (CsA) on the human renal proximal tubular cell line, HK-2 cell. Four European laboratories took part in this study. Under standardised conditions, each laboratory treated HK-2 cells with 5microM CsA for 12 and 48h. RNA was isolated and hybridised to Affymetrix HGU-133 plus two arrays at three different sites. Analysis of the transcription profiles demonstrated that one laboratory clustered away from the other laboratories, potentially due to an inclusion of a trypsinisation step by this laboratory. Once the genes responsible for this separate clustering were removed all laboratories showed similar expression profiles. There was a major impact of time since feed, due to medium exhaustion in the 48h arrays compared to the 12h arrays, regardless of CsA treatment. Biological processes including general vesicle transport, amino acid metabolism, amino acid transport and amino acid biosynthesis were over-represented due to time since feed, while cell cycle, DNA replication, mitosis and DNA metabolism were under-represented. CsA responsive genes were involved in cell cycle, the p53 pathway and Wnt signaling. Additionally there was an overlap of differentially expressed genes due to CsA and medium exhaustion which is most likely due to CsA induced glycolysis. The glucose deprivation dependent genes HspA5 and GP96 and the Hsp70 chaperones DNAJ/Hsp40, DNAJ/HspB9, DNAJ/HspC3 DNAJ/HspC10 were induced by both CsA and medium exhaustion. We conclude that under standardised conditions the application of Affymetrix DNA microarrays to in vitro toxiciological studies are satisfactorily reproducible. However, confounding factors such as medium exhaustion must also be considered in such analyses.


Assuntos
Alternativas aos Testes com Animais , Ciclosporina/toxicidade , Expressão Gênica/genética , Imunossupressores/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Linhagem Celular , Análise por Conglomerados , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Humanos , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
19.
Oncol Lett ; 17(3): 3041-3047, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30867732

RESUMO

Primary cilia are microtubule-based organelles that are expressed on almost all mammalian cells. It has become apparent that these structures are important signaling hubs that serve crucial roles in Wnt, hedgehog, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and Notch signaling pathways. A number of diseases have been found to involve dysfunctional primary cilia; collectively these diseases are called ciliopathies. In recent years, there has been more focus on the association between primary cilia and cancer, including renal, pancreatic and breast cancer. Numerous studies have demonstrated that various types of cancer cells fail to express cilia. Notably, it has also been indicated that a number of renal carcinogens induce a significant loss of cilia in renal epithelial cells. The present review focuses on the existing literature regarding primary cilia and their involvement with cancer signaling pathways, providing a brief overview of the structural features and functions of primary cilia, then discussing the evidence associating primary cilia with cancer, and presenting the available information on the ERK/MAPK, hedgehog and Wnt signaling pathways, and their involvement in primary cilia in association with cancer.

20.
Biochim Biophys Acta Mol Basis Dis ; 1865(12): 165532, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31422117

RESUMO

BACKGROUND: Primary cilia have been shown to play a central role in regulating epithelial cell differentiation during injury and repair. Growing evidence implicates structural and functional abnormalities of primary cilia in kidney epithelial cells in the onset and development of various kidney diseases including polycystic kidney disease (PKD). Neutrophil-gelatinase associated lipocalin (NGAL) has been identified as a reliable urinary biomarker of kidney injury. However, the mechanism by which this protein accumulates in patient urine samples has not been fully elucidated. METHODS: Human renal tubular epithelial cells (RPTECs) were exposed to previously characterized deciliating agents to assess mechanisms of primary cilium loss. Confocal immunofluorescent imaging was employed to visualise the effects on cilia. Western blot analysis was utilised to quantify the ciliary protein Arl13b in both RPTEC whole cell lysates and supernatants. Co-immunoprecipitation was used to demonstrate co-localisation of Arl13b and NGAL in urinary samples from a clinical Chronic Allograft Nephropathy (CAN) cohort. RESULTS: Immunofluorescent analysis revealed that NGAL was localised to the primary cilium in RPTECs, co-localizing with a ciliary specific protein, Arl13b. Deciliation experiments showed that loss of the cilia coincided with loss of NGAL from the cells. CONCLUSION: The accumulation of NGAL in supernatants in vitro and in the urine of CAN patients was concurrent with loss of Arl13b, a specific ciliary protein. The findings of this study propose that increased NGAL urinary concentrations are directly linked to deciliation of the renal epithelial cells as a result of injury.


Assuntos
Cílios/patologia , Células Epiteliais/patologia , Nefropatias/diagnóstico , Túbulos Renais/patologia , Lipocalina-2/análise , Fatores de Ribosilação do ADP/análise , Fatores de Ribosilação do ADP/urina , Biomarcadores/análise , Linhagem Celular , Cílios/química , Células Epiteliais/citologia , Humanos , Nefropatias/patologia , Nefropatias/urina , Túbulos Renais/citologia , Lipocalina-2/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA