Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Infect Immun ; 82(6): 2337-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664506

RESUMO

SIC and DRS are related proteins present in only 4 of the >200 Streptococcus pyogenes emm types. These proteins inhibit complement-mediated lysis and/or the activity of certain antimicrobial peptides (AMPs). A gene encoding a homologue of these proteins, herein called DrsG, has been identified in the related bacterium Streptococcus dysgalactiae subsp. equisimilis. Here we show that geographically dispersed isolates representing 14 of 50 emm types examined possess variants of drsG. However, not all isolates within the drsG-positive emm types possess the gene. Sequence comparisons also revealed a high degree of conservation in different S. dysgalactiae subsp. equisimilis emm types. To examine the biological activity of DrsG, recombinant versions of two major DrsG variants, DrsGS and DrsGL, were expressed and purified. Western blot analysis using antisera raised to these proteins demonstrated both variants to be expressed and secreted into culture supernatants. Unlike SIC, but similar to DRS, DrsG does not inhibit complement-mediated lysis. However, like both SIC and DRS, DrsG is a ligand of the cathelicidin LL-37 and is inhibitory to its bactericidal activity in in vitro assays. Conservation of prolines in the C-terminal region also suggests that these residues are important in the biology of this family of proteins. This is the first report demonstrating the activity of an AMP-inhibitory protein in S. dysgalactiae subsp. equisimilis and suggests that inhibition of AMP activity is the primary function of this family of proteins. The acquisition of the complement-inhibitory activity of SIC may reflect its continuing evolution.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/fisiologia , Streptococcus/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Western Blotting , Morte Celular/fisiologia , Contagem de Colônia Microbiana , Eritrócitos/efeitos dos fármacos , Proteínas Recombinantes , Ovinos , Streptococcus/efeitos dos fármacos , Catelicidinas
2.
PLoS One ; 11(6): e0156639, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27310707

RESUMO

The C-terminal region of the M-protein of Streptococcus pyogenes is a major target for vaccine development. The major feature is the C-repeat region, consisting of 35-42 amino acid repeat units that display high but not perfect identity. SV1 is a S. pyogenes vaccine candidate that incorporates five 14mer amino acid sequences (called J14i variants) from differing C-repeat units in a single recombinant construct. Here we show that the J14i variants chosen for inclusion in SV1 are the most common variants in a dataset of 176 unique M-proteins. Murine antibodies raised against SV1 were shown to bind to each of the J14i variants present in SV1, as well as variants not present in the vaccine. Antibodies raised to the individual J14i variants were also shown to bind to multiple but different combinations of J14i variants, supporting the underlying rationale for the design of SV1. A Lewis Rat Model of valvulitis was then used to assess the capacity of SV1 to induce deleterious immune response associated with rheumatic heart disease. In this model, both SV1 and the M5 positive control protein were immunogenic. Neither of these antibodies were cross-reactive with cardiac myosin or collagen. Splenic T cells from SV1/CFA and SV1/alum immunized rats did not proliferate in response to cardiac myosin or collagen. Subsequent histological examination of heart tissue showed that 4 of 5 mice from the M5/CFA group had valvulitis and inflammatory cell infiltration into valvular tissue, whereas mice immunised with SV1/CFA, SV1/alum showed no sign of valvulitis. These results suggest that SV1 is a safe vaccine candidate that will elicit antibodies that recognise the vast majority of circulating GAS M-types.


Assuntos
Anticorpos Antibacterianos/biossíntese , Antígenos de Bactérias/imunologia , Cardiopatia Reumática/prevenção & controle , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Streptococcus pyogenes/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Antígenos de Bactérias/genética , Colágeno/genética , Colágeno/metabolismo , Feminino , Expressão Gênica , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/imunologia , Valvas Cardíacas/microbiologia , Valvas Cardíacas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Miosinas/genética , Miosinas/metabolismo , Ratos , Ratos Endogâmicos Lew , Sequências Repetitivas de Aminoácidos , Cardiopatia Reumática/imunologia , Cardiopatia Reumática/microbiologia , Cardiopatia Reumática/patologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/microbiologia , Baço/patologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Vacinas Estreptocócicas/biossíntese , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/microbiologia , Linfócitos T/patologia , Vacinas Sintéticas
3.
Clin Vaccine Immunol ; 22(8): 938-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084513

RESUMO

The disease spectrum caused by Streptococcus dysgalactiae subsp. equisimilis resembles that of S. pyogenes (group A streptococcus [GAS]). These two bacterial species are closely related and possess many common virulence characteristics. While some GAS strains express virulence factors called streptococcal inhibitor of complement (SIC) and distantly related to SIC (DRS), some S. dysgalactiae subsp. equisimilis isolates express an orthologue of DRS, which is referred to as DRS-G. We reported previously that seropositivity for either anti-SIC or anti-DRS antibodies (Abs) is associated with poststreptococcal glomerulonephritis (PSGN). However, only seropositivity for anti-SIC Abs is associated with chronic kidney disease (CKD). We now extend the study to test whether seropositivity for anti-DRS-G Abs is also associated with these renal diseases. Stored serum samples collected for our previous study were tested by an enzyme-linked immunosorbent assay (ELISA) for Abs to DRS-G. The samples represented sera from 100 CKD adult patients, 70 adult end-stage renal disease (ESRD) patients, 25 PSGN pediatric patients, and corresponding age-matched control subjects. The proportion of PSGN, CKD, and ESRD patients who showed seroreaction to anti-DRS-G Abs was significantly higher than that of the corresponding age-matched controls, who in general exhibited seropositivity rates commensurate with the isolation rate of drsG-positive S. dysgalactiae subsp. equisimilis in the community during this study period. Since higher rates of seropositivity for anti-DRS-G Abs in the renal disease categories are resultant of previous infections with DRS-G-positive S. dysgalactiae subsp. equisimilis strains, we conclude the seropositivity is an additional risk factor for these renal diseases. In this regard, anti-DRS-G Abs have attributes similar to those of the anti-SIC Abs.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Glomerulonefrite/epidemiologia , Insuficiência Renal Crônica/epidemiologia , Infecções Estreptocócicas/complicações , Streptococcus/imunologia , Fatores de Virulência/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Glomerulonefrite/etiologia , Humanos , Índia/epidemiologia , Lactente , Masculino , Insuficiência Renal Crônica/etiologia , Fatores de Risco
4.
Front Microbiol ; 5: 676, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566202

RESUMO

Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a human pathogen that colonizes the skin or throat, and causes a range of diseases from relatively benign pharyngitis to potentially fatal invasive diseases. While not as virulent as the close relative Streptococcus pyogenes the two share a number of virulence factors and are known to coexist in a human host. Both pre- and post-genomic studies have revealed that horizontal gene transfer (HGT) and recombination occurs between these two organisms and plays a major role in shaping the population structure of SDSE. This review summarizes our current knowledge of HGT and recombination in the evolution of SDSE.

5.
J Control Release ; 196: 252-60, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25285611

RESUMO

The buccal mucosa (inner cheek) is an attractive site for delivery of immunotherapeutics, due to its ease of access and rich antigen presenting cell (APC) distribution. However, to date, most delivery methods to the buccal mucosa have only been topical-with the challenges of: 1) an environment where significant biomolecule degradation may occur; 2) inability to reach the APCs that are located deep in the epithelium and lamina propria; and 3) salivary flow and mucous secretion that may result in removal of the therapeutic agent before absorption has taken place. To overcome these challenges and achieve consistent, repeatable targeted delivery of immunotherapeutics to within the buccal mucosa (not merely on to the surface), we utilised microprojection arrays (Nanopatches-110 µm length projections, 3364 projections, 16 mm2 surface area) with a purpose built clip applicator. The mechanical application of Nanopatches bearing a dry-coated vaccine (commercial influenza vaccine, as a test case immunotherapeutic) released the vaccine to a depth of 47.8±14.8 µm (mean±SD, n=4), in the mouse buccal mucosa (measured using fluorescent delivered dyes and CryoSEM). This location is in the direct vicinity of APCs, facilitating antigenic uptake. Resultant systemic immune responses were similar to systemic immunization methods, and superior to comparative orally immunised mice. This confirms the Nanopatch administered vaccine was delivered into the buccal mucosa and not ingested. This study demonstrates a minimally-invasive delivery device with rapid (2 min of application time), accurate and consistent release of immunotherapeutics in to the buccal mucosa-that conceptually can be extended in to human use for broad and practical utility.


Assuntos
Administração Bucal , Imunoterapia/métodos , Mucosa Bucal/química , Vacinas/administração & dosagem , Animais , Células Apresentadoras de Antígenos , Antígenos/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Vacinas contra Influenza/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Bucal/citologia , Nanotecnologia , Vacinação
6.
BMC Res Notes ; 7: 521, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25115242

RESUMO

BACKGROUND: Integrative conjugative elements (ICEs) are mobile genetic elements (MGEs) that possess all genes necessary for excision, transfer and integration into recipient genome. They also carry accessory genes that impart new phenotypic features to recipient strains. ICEs therefore play an important role in genomic plasticity and population structure. We previously characterised ICESde3396, the first ICE identified in the ß-hemolytic Streptococcus dysgalactiae subsp equisimilis (SDSE) and demonstrated its transfer to single isolates of Streptococcus pyogenes (group A streptococcus, GAS) and Streptococcus agalactiae (group B streptococcus, GBS). While molecular studies found the ICE in multiple SDSE and GBS isolates, it was absent in all GAS isolates examined. RESULTS: Here we demonstrate that ICESde3396:km is transferable from SDSE to multiple SDSE, GAS and GBS isolates. However not all strains of these species were successful recipients under the same growth conditions. To address the role that host factors may have in conjugation we also undertook conjugation experiments in the presence of A549 epithelial cells and DMEM. While Horizontal Gene Transfer (HGT) occurred, conjugation efficiencies were no greater than when similar experiments were conducted in DMEM. Additionally transfer to GAS NS235 was successful in the presence of DMEM but not in Todd Hewitt Broth suggesting that nutritional factors may also influence HGT. The GAS and GBS transconjugants produced in this study are also able to act as donors of the ICE. CONCLUSION: We conclude that ICEs are major sources of interspecies HGT between ß-hemolytic streptococci, and by introducing accessory genes imparting novel phenotypic characteristics, have the potential to alter the population structure of these species.


Assuntos
Conjugação Genética , Sequências Repetitivas Dispersas , Streptococcus/genética , Hemólise , Especificidade da Espécie , Streptococcus/classificação
7.
J Invest Dermatol ; 134(9): 2361-2370, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24714201

RESUMO

Vaccines delivered to the skin by microneedles-with and without adjuvants-have increased immunogenicity with lower doses than standard vaccine delivery techniques such as intramuscular or intradermal injection. However, the mechanisms underlying this skin-mediated "adjuvant" effect are not clear. Here, we show that the dynamic application of a microprojection array (the Nanopatch) to skin generates localized transient stresses invoking cell death around each projection. Nanopatch application caused significantly higher levels (∼65-fold) of cell death in murine ear skin than i.d. injection using a hypodermic needle. Measured skin cell death is associated with modeled stresses ∼1-10 MPa. Nanopatch-immunized groups also yielded consistently higher anti-immunoglobulin G endpoint titers (up to 50-fold higher) than i.d. groups after delivery of a split virion influenza vaccine. Importantly, colocalization of cell death with nearby live skin cells and delivered antigen was necessary for immunogenicity enhancement. These results suggest a correlation between cell death caused by the Nanopatch with increased immunogenicity. We propose that the localized cell death serves as a "physical immune enhancer" for the adjacent viable skin cells, which also receive antigen from the projections. This natural immune enhancer effect has the potential to mitigate or replace chemical-based adjuvants in vaccines.


Assuntos
Morte Celular/imunologia , Vacinas contra Influenza/farmacologia , Pele/imunologia , Vacinação/métodos , Potência de Vacina , Administração Cutânea , Animais , Sobrevivência Celular/imunologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Vacinas contra Influenza/administração & dosagem , Injeções Intradérmicas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanoestruturas
8.
PLoS One ; 8(7): e67888, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874462

RESUMO

The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.


Assuntos
Adenovirus dos Símios , Vetores Genéticos , Vacinas Antimaláricas/imunologia , Linfócitos T/imunologia , Vacinas Atenuadas/imunologia , Vacinas de DNA/imunologia , Vaccinia virus , Adenovirus dos Símios/genética , Adenovirus dos Símios/imunologia , Animais , Química Farmacêutica , Derme/imunologia , Epiderme/imunologia , Feminino , Liofilização , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Camundongos , Transgenes/imunologia , Potência de Vacina , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas de DNA/administração & dosagem , Vaccinia virus/genética , Vaccinia virus/imunologia
9.
Burns ; 37(6): 1001-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21501931

RESUMO

High-resolution, high-contrast, three-dimensional images of live cell and tissue architecture can be obtained using second harmonic generation (SHG), which comprises non-absorptive frequency changes in an excitation laser line. SHG does not require any exogenous antibody or fluorophore labeling, and can generate images from unstained sections of several key endogenous biomolecules, in a wide variety of species and from different types of processed tissue. Here, we examined normal control human skin sections and human burn scar tissues using SHG on a multi-photon microscope (MPM). Examination and comparison of normal human skin and burn scar tissue demonstrated a clear arrangement of fibers in the dermis, similar to dermal collagen fiber signals. Fluorescence-staining confirmed the MPM-SHG collagen colocalization with antibody staining for dermal collagen type-I but not fibronectin or elastin. Furthermore, we were able to detect collagen MPM-SHG signal in human frozen sections as well as in unstained paraffin embedded tissue sections that were then compared with hematoxylin and eosin staining in the identical sections. This same approach was also successful in localizing collagen in porcine and ovine skin samples, and may be particularly important when species-specific antibodies may not be available. Collectively, our results demonstrate that MPM SHG-detection is a useful tool for high resolution examination of collagen architecture in both normal and wounded human, porcine and ovine dermal tissue.


Assuntos
Queimaduras , Cicatriz , Colágeno Tipo I/análise , Epiderme/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Queimaduras/patologia , Criança , Cicatriz/patologia , Elastina/análise , Epiderme/patologia , Feminino , Feto , Fibronectinas/análise , Humanos , Ovinos , Suínos
10.
J Control Release ; 148(3): 327-33, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-20850487

RESUMO

HSV-2-gD2 DNA vaccine was precisely delivered to immunologically sensitive regions of the skin epithelia using dry-coated microprojection arrays. These arrays delivered a vaccine payload to the epidermis and the upper dermis of mouse skin. Immunomicroscopy results showed that, in 43 ± 5% of microprojection delivery sites, the DNA vaccine was delivered to contact with professional antigen presenting cells in the epidermal layer. Associated with this efficient delivery of the vaccine into the vicinity of the professional antigen presenting cells, we achieved superior antibody responses and statistically equal protection rate against an HSV-2 virus challenge, when compared with the mice immunized with intramuscular injection using needle and syringe, but with less than 1/10th of the delivered antigen.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Pele/metabolismo , Vacinação/instrumentação , Vacinas de DNA/administração & dosagem , Administração Cutânea , Animais , Formação de Anticorpos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Absorção Cutânea
11.
PLoS One ; 4(6): e5940, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19529772

RESUMO

Despite the introduction of conjugated polysaccharide vaccines for many of the Neisseria meningitidis serogroups, neisserial infections continue to cause septicaemia and meningitis across the world. This is in part due to the difficulties in developing a, cross-protective vaccine that is effective against all serogroups, including serogroup B meningococci. Although convalescent N. meningitidis patients develop a natural long-lasting cross-protective immunity, the antigens that mediate this response remain unknown. To help define the target of this protective immunity we identified the proteins recognized by IgG in sera from meningococcal patients by a combination of 2D protein gels, western blots and mass spectrometry. Although a number of outer membrane antigens were identified the majority of the antigens were cytoplasmic, with roles in cellular processes and metabolism. When recombinant proteins were expressed and used to raise sera in mice, none of the antigens elicited a positive SBA result, however flow cytometry did demonstrate that some, including the ribosomal protein, RplY were localised to the neisserial cell surface.


Assuntos
Sistema Imunitário , Neisseria meningitidis/imunologia , Neisseria meningitidis/metabolismo , Proteômica/métodos , Animais , Antígenos de Bactérias/química , Citoplasma/metabolismo , Feminino , Humanos , Imunoglobulina G/química , Espectrometria de Massas/métodos , Meningite Meningocócica/imunologia , Camundongos , Proteoma , Proteínas Recombinantes/química , Sepse/imunologia
12.
Future Microbiol ; 3(1): 67-77, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18230035

RESUMO

Genital infection with Chlamydia trachomatis is an escalating global public health concern causing considerable morbidity and socioeconomic burden worldwide. Although antibiotics are used to treat symptomatic urogenital infections, chlamydial infection remains asymptomatic in approximately 50% of infected men and 70% of infected women. The major clinical manifestations of genital chlamydial infection in women include mucopurulent cervicitis, endometritis and pelvic inflammatory disease. Genital infection with C. trachomatis markedly enhances the risk for reproductive tract sequelae in women, including tubal factor infertility, chronic pain and ectopic pregnancy. Definitive infection control of chlamydial infections will likely be achievable through a safe and efficacious vaccine. This will require identifying protective chlamydial antigens in animal models as well as identifying effective adjuvants and delivery systems that target subunit vaccines to immune inductive sites or secondary lymphoid tissues, and will be safe for use in humans.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Doenças dos Genitais Femininos/imunologia , Animais , Vacinas Bacterianas/uso terapêutico , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/prevenção & controle , Feminino , Doenças dos Genitais Femininos/microbiologia , Doenças dos Genitais Femininos/prevenção & controle , Humanos , Modelos Biológicos
13.
Vaccine ; 25(14): 2643-55, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17239501

RESUMO

Protective sequences of Chlamydia muridarum were identified as potential vaccine candidates by screening a genomic DNA expression library and assessing the immune responses of mice immunized with individual library clones following vaginal challenge with live Chlamydia. Groups of female BALB/c mice were immunized intra-abdominally by gene gun delivery of DNA three times at three-weekly intervals with individual library clones expressing chlamydial protein fragments and humoral and cell-mediated immune responses were evaluated. Chlamydia-specific cytokines including tumour necrosis factor-alpha (TNF-alpha) interleukin-10 (IL-10), interleukin-4 (IL-4), interleukin-12 (IL-12) and interferon-gamma (IFN-gamma) were detected in mice immunized either with selected DNA clones in spleen cells (0.2-135.2 pg/mL) or lymph nodes (0.15-84.9 pg/mL). The most protective antigen identified was TC0512, a putative outer membrane protein (OMP). Immunization of mice with this clone elicited T-helper type-1 (Th-1) and T-helper type-2 (Th-2) cytokines as well as and IgG1 and IgG2a in sera of these animals. Ten days after the last immunization, animals were challenged intra-vaginally with 5 x 10(4) inclusion-forming units (IFUs) of C. muridarum. At 9 days following challenge TC0512 showed a 73% reduction in the number of recoverable Chlamydia compared with vector only immunized controls. Six additional clones were identified that also conferred varying degrees of protection against live chlamydial challenge. Significant protection against the initial stages of infection was shown by two DNA clones (encoding hypothetical proteins) and five clones showed enhanced clearance of chlamydial infection following DNA immunization and live chlamydial challenge. These results demonstrate that the C. muridarum genome can be screened for individual vaccine candidates by genetic immunization and that the screen produces novel and partially protective vaccine candidates.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Vacinas de DNA/imunologia , Doenças Vaginais/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Biolística , Feminino , Biblioteca Gênica , Imunização , Interleucina-10/biossíntese , Interleucina-4/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência de DNA , Fator de Necrose Tumoral alfa/biossíntese , Vagina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA