Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(5): 2323-2339, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38142457

RESUMO

The RNA binding protein Hfq has a central role in the post-transcription control of gene expression in many bacteria. Numerous studies have mapped the transcriptome-wide Hfq-mediated RNA-RNA interactions in growing bacteria or bacteria that have entered short-term growth-arrest. To what extent post-transcriptional regulation underpins gene expression in growth-arrested bacteria remains unknown. Here, we used nitrogen (N) starvation as a model to study the Hfq-mediated RNA interactome as Escherichia coli enter, experience, and exit long-term growth arrest. We observe that the Hfq-mediated RNA interactome undergoes extensive changes during N starvation, with the conserved SdsR sRNA making the most interactions with different mRNA targets exclusively in long-term N-starved E. coli. Taking a proteomics approach, we reveal that in growth-arrested cells SdsR influences gene expression far beyond its direct mRNA targets. We demonstrate that the absence of SdsR significantly compromises the ability of the mutant bacteria to recover growth competitively from the long-term N-starved state and uncover a conserved post-transcriptional regulatory axis which underpins this process.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Mensageiro/metabolismo , Bactérias/genética , Pequeno RNA não Traduzido/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo
2.
Mol Microbiol ; 117(1): 54-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34219284

RESUMO

Under conditions of nutrient adversity, bacteria adjust metabolism to minimize cellular energy usage. This is often achieved by controlling the synthesis and degradation of RNA. In Escherichia coli, RNase E is the central enzyme involved in RNA degradation and serves as a scaffold for the assembly of the multiprotein complex known as the RNA degradosome. The activity of RNase E against specific mRNAs can also be regulated by the action of small RNAs (sRNA). In this case, the ubiquitous bacterial chaperone Hfq bound to sRNAs can interact with the RNA degradosome for the sRNA guided degradation of target RNAs. The RNA degradosome and Hfq have never been visualized together in live bacteria. We now show that in long-term nitrogen starved E. coli, both RNase E and Hfq co-localize in a single, large focus. This subcellular assembly, which we refer to as the H-body, forms by a liquid-liquid phase separation type mechanism and includes components of the RNA degradosome, namely, the helicase RhlB and the exoribonuclease polynucleotide phosphorylase. The results support the existence of a hitherto unreported subcellular compartmentalization of a process(s) associated with RNA management in stressed bacteria.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Complexos Multienzimáticos , Nitrogênio/deficiência , Polirribonucleotídeo Nucleotidiltransferase , RNA Helicases , Compartimento Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/genética , Escherichia coli/enzimologia , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Estabilidade de RNA , RNA Bacteriano/genética , Estresse Fisiológico
3.
J Biol Chem ; 295(35): 12355-12367, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32532816

RESUMO

The initial adaptive responses to nutrient depletion in bacteria often occur at the level of gene expression. Hfq is an RNA-binding protein present in diverse bacterial lineages that contributes to many different aspects of RNA metabolism during gene expression. Using photoactivated localization microscopy and single-molecule tracking, we demonstrate that Hfq forms a distinct and reversible focus-like structure in Escherichia coli specifically experiencing long-term nitrogen starvation. Using the ability of T7 phage to replicate in nitrogen-starved bacteria as a biological probe of E. coli cell function during nitrogen starvation, we demonstrate that Hfq foci have a role in the adaptive response of E. coli to long-term nitrogen starvation. We further show that Hfq foci formation does not depend on gene expression once nitrogen starvation has set in and occurs indepen-dently of the transcription factor N-regulatory protein C, which activates the initial adaptive response to N starvation in E. coli These results serve as a paradigm to demonstrate that bacterial adaptation to long-term nutrient starvation can be spatiotemporally coordinated and can occur independently of de novo gene expression during starvation.


Assuntos
Adaptação Fisiológica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Complexos Multiproteicos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Complexos Multiproteicos/genética , Nitrogênio/metabolismo
4.
J Bacteriol ; 202(17)2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32571968

RESUMO

Bacteria initially respond to nutrient starvation by eliciting large-scale transcriptional changes. The accompanying changes in gene expression and metabolism allow the bacterial cells to effectively adapt to the nutrient-starved state. How the transcriptome subsequently changes as nutrient starvation ensues is not well understood. We used nitrogen (N) starvation as a model nutrient starvation condition to study the transcriptional changes in Escherichia coli experiencing long-term N starvation. The results reveal that the transcriptome of N-starved E. coli undergoes changes that are required to maximize chances of viability and to effectively recover growth when N starvation conditions become alleviated. We further reveal that, over time, N-starved E. coli cells rely on the degradation of allantoin for optimal growth recovery when N becomes replenished. This study provides insights into the temporally coordinated adaptive responses that occur in E. coli experiencing sustained N starvation.IMPORTANCE Bacteria in their natural environments seldom encounter conditions that support continuous growth. Hence, many bacteria spend the majority of their time in states of little or no growth due to starvation of essential nutrients. To cope with prolonged periods of nutrient starvation, bacteria have evolved several strategies, primarily manifesting themselves through changes in how the information in their genes is accessed. How these coping strategies change over time under nutrient starvation is not well understood, and this knowledge is important not only to broaden our understanding of bacterial cell function but also to potentially find ways to manage harmful bacteria. This study provides insights into how nitrogen-starved Escherichia coli bacteria rely on different genes during long-term nitrogen starvation.


Assuntos
Alantoína/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Nitrogênio/metabolismo , Adaptação Fisiológica , Escherichia coli/efeitos dos fármacos , Nitrogênio/farmacologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA