Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Electron Mater ; 7(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36111247

RESUMO

The large-scale growth of semiconducting thin films on insulating substrates enables batch fabrication of atomically thin electronic and optoelectronic devices and circuits without film transfer. Here an efficient method to achieve rapid growth of large-area monolayer MoSe2 films based on spin coating of Mo precursor and assisted by NaCl is reported. Uniform monolayer MoSe2 films up to a few inches in size are obtained within a short growth time of 5 min. The as-grown monolayer MoSe2 films are of high quality with large grain size (up to 120 µm). Arrays of field-effect transistors are fabricated from the MoSe2 films through a photolithographic process; the devices exhibit high carrier mobility of ≈27.6 cm2 V-1 s-1 and on/off ratios of ≈105. The findings provide insight into the batch production of uniform thin transition metal dichalcogenide films and promote their large-scale applications.

2.
ACS Nano ; 11(9): 8619-8627, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28767217

RESUMO

Heterostructures of transition metal dichalcogenides (TMDs) offer the attractive prospect of combining distinct physical properties derived from different TMD structures. Here, we report direct chemical vapor deposition of in-plane monolayer heterostructures based on 1H-MoS2 and 1T'-MoTe2. The large lattice mismatch between these materials led to intriguing phenomena at their interface. Atomic force microscopy indicated buckling in the 1H region. Tip-enhanced Raman spectroscopy showed mode structure consistent with Te substitution in the 1H region during 1T'-MoTe2 growth. This was confirmed by atomic resolution transmission electron microscopy, which also revealed an atomically stitched, dislocation-free 1H/1T' interface. Theoretical modeling revealed that both the buckling and absence of interfacial misfit dislocations were explained by lateral gradients in Te substitution levels within the 1H region and elastic coupling between 1H and 1T' domains. Phase field simulations predicted 1T' morphologies with spike-shaped islands at specific orientations consistent with experiments. Electrical measurements across the heterostructure confirmed its electrical continuity. This work demonstrates the feasibility of dislocation-free stitching of two different atomic configurations and a pathway toward direct synthesis of monolayer TMD heterostructures of different phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA