Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 124(47): 10732-10738, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33174757

RESUMO

We have used transient absorption spectroscopy in the UV-visible and X-ray regions to characterize the excited state of CarH, a protein photoreceptor that uses a form of B12, adenosylcobalamin (AdoCbl), to sense light. With visible excitation, a nanosecond-lifetime photoactive excited state is formed with unit quantum yield. The time-resolved X-ray absorption near edge structure difference spectrum of this state demonstrates that the excited state of AdoCbl in CarH undergoes only modest structural expansion around the central cobalt, a behavior similar to that observed for methylcobalamin rather than for AdoCbl free in solution. We propose a new mechanism for CarH photoreactivity involving formation of a triplet excited state. This allows the sensor to operate with high quantum efficiency and without formation of potentially dangerous side products. By stabilizing the excited electronic state, CarH controls reactivity of AdoCbl and enables slow reactions that yield nonreactive products and bypass bond homolysis and reactive radical species formation.


Assuntos
Cobalto
2.
J Phys Chem Lett ; 10(18): 5484-5489, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31483136

RESUMO

Polarized transient X-ray absorption near-edge structure (XANES) was used to probe the excited-state structure of a photostable B12 antivitamin (Coß-2-(2,4-difluorophenyl)-ethynylcobalamin, F2PhEtyCbl). A drop-on-demand delivery system synchronized to the LCLS X-ray free electron laser pulses was implemented and used to measure the XANES difference spectrum 12 ps following excitation, exposing only ∼45 µL of sample. Unlike cyanocobalamin (CNCbl), where the Co-C bond expands 15-20%, the excited state of F2PhEtyCbl is characterized by little change in the Co-C bond, suggesting that the acetylide linkage raises the barrier for expansion of the Co-C bond. In contrast, the lower axial Co-NDMB bond is elongated in the excited state of F2PhEtyCbl by ca. 10% or more, comparable to the 10% elongation observed for Co-NDMB in CNCbl.


Assuntos
Complexos de Coordenação/química , Modelos Moleculares , Vitamina B 12/antagonistas & inibidores , Carbono/química , Cobalto/química , Cinética , Conformação Molecular , Processos Fotoquímicos , Teoria Quântica , Termodinâmica , Raios X
3.
J Phys Chem B ; 123(28): 6042-6048, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31290669

RESUMO

We use picosecond time-resolved polarized X-ray absorption near-edge structure (XANES) measurements to probe the structure of the long-lived photoexcited state of methylcobalamin (MeCbl) and the cob(II)alamin photoproduct formed following photoexcitation of adenosylcobalamin (AdoCbl, coenzyme B12). For MeCbl, we used 520 nm excitation and a time delay of 100 ps to avoid the formation of cob(II)alamin. We find only small spectral changes in the equatorial and axial directions, which we interpret as arising from small (<∼0.05 Å) changes in both the equatorial and axial distances. This confirms expectations based on prior UV-visible transient absorption measurements and theoretical simulations. We do not find evidence for the significant elongation of the Co-C bond reported by Subramanian [ J. Phys. Chem. Lett. 2018 , 9 , 1542 - 1546 ] following 400 nm excitation. For AdoCbl, we resolve the difference XANES contributions along three unique molecular axes by exciting with both 540 and 365 nm light, demonstrating that the spectral changes are predominantly polarized along the axial direction, consistent with the loss of axial ligation. These data suggest that the microsecond "recombination product" identified by Subramanian et al. is actually the cob(II)alamin photoproduct that is produced following bond homolysis of MeCbl with 400 nm excitation. Our results highlight the pronounced advantage of using polarization-selective transient X-ray absorption for isolating structural dynamics in systems undergoing atomic displacements that are strongly correlated to the exciting optical polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA