Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676027

RESUMO

The variety of equipment implementing laser triangulation technology for 3D scanning makes it difficult to analyse their performance, comparability, and traceability. In this study, three laser triangulation sensors arranged in different configurations are analysed using high precision spheres made of different materials and surface finishes. Three types of reference parameters were used: diameter, form error, and standard deviation of the point cloud. The experimentation was based on studying the quality of the point clouds generated by the three sensors, which enabled us to find and quantify an edge effect in the horizon of the scanned surface. A procedure to reach the optimal filtering conditions was proposed, and a chart of recommended usage of each sphere (material and finish) was created for the different types of sensors. This filter enables removal of both spurious points and those few points that spoil the form error, greatly improving the quality of the measurement.

2.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36433191

RESUMO

The use of non-contact scanning equipment in metrology and in dimensional and geometric inspection applications is increasing due to its ease of use, the speed and density of scans, and the current costs. In fact, these technologies are becoming increasingly dominant in the industrial environment, thus moving from reverse engineering applications to metrological applications. However, this planned transfer requires actions to ensure the achievable accuracy by providing traceability of measurements. In the present study, a comparison between the devices is carried out and a specific standard artefact is designed, equipped with multiple ceramic optically friendly entities, and allowing a wide variety of geometric dimensioning and tolerancing (GD&T). Four different 3D scanning sensors are used in the experimentation. Three of them are based on laser triangulation, and the fourth is a structured blue light sensor (fringe pattern projection). The standard artefact is calibrated with a high accuracy, using a coordinate measuring machine (CMM) and probing sensors. With this CMM, reference values of multiple predefined GD&T are obtained. The evaluation methodology maximises the accuracy of each device in measuring the dimensions of the artefact due to the good dimensional (milling and turning), surface (control of machining variables), and the dimensional and spatial distribution characteristics. The procedure also includes the same treatment of the captured point clouds (trimming, filtering, and best-fit algorithm, etc.) in each of the four 3D scanning sensors considered. From this process, very reliable measurements of the maximum achievable accuracy of each device (deviations from the CMM measurements) are finally obtained, and a multi-characteristic comparison between the four sensors is performed, also with high reliability.

3.
Sensors (Basel) ; 20(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512944

RESUMO

Metal additive manufacturing (AM) allows obtaining functional parts with the possibility of optimizing them topologically without affecting system performance. This is of great interest for sectors such as aerospace, automotive, and medical-surgical. However, from a metrological point of view, the high requirements applied in these sectors constitute a challenge for inspecting these types of parts. Non-contact inspection has gained great relevance due to the rapid verification of AM parts. Optical measurement systems (OMSs) are being increasingly adopted for geometric dimensioning and tolerancing (GD&T) verification within the context of Industry 4.0. In this paper, the suitability (advantages and limitations) of five different OMSs (based on laser triangulation, conoscopic holography, and structured light techniques) for GD&T verification of parts manufactured by selective laser melting (SLM) is analyzed. For this purpose, a specific testing part was designed and SLM-manufactured in 17-4PH stainless steel. Once the part was measured by contact (obtaining the reference GD&T values), it was optically measured. The scanning results allow comparing the OMSs in terms of their inspection speed as well as dimensional and geometrical accuracy. As a result, two portable systems (handheld laser triangulation and structured blue-light scanners) were identified as the most accurate optical techniques for scanning SLM parts.

4.
Materials (Basel) ; 16(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570147

RESUMO

Traditionally, 3D digitizing sensors have been based on contact measurement. Given the disadvantages of this type of measurement, non-contact sensors such as structured light sensors have gained the attention of many sectors in recent years. The fact that their metrological performance is affected by the optical properties of the digitized material, together with the lack of standards, makes it necessary to develop characterization work to validate materials and calibration artifacts for the qualification and calibration of these sensors. This work compares and optically characterizes different materials and surface finishes of reference spheres used in the calibration of two structured light sensors with different fields of application, with the aim to determine the most suitable sphere material-sensor combination in each case. The contact measurement system of a CMM is used as a reference and, for the processing of the information from the sensors, the application of two different filters is analyzed. The results achieved point to sandblasted stainless steel spheres as the best choice for calibrating or qualifying these sensors, as well as for use as registration targets in digitizing. Tungsten carbide spheres and zirconium are unsuitable for this purpose.

5.
Materials (Basel) ; 15(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35683040

RESUMO

The improvement of industrial manufacturing processes requires measurement procedures and part inspection tasks to be faster and faster while remaining effective. In this sense, the capabilities of noncontact measuring systems are of great help, not only because of the great amount of data they provide but also for the ease of the integration of these systems as well as their automation, minimising the impact on the industry. This work presents a comparative study on the influence of two surface treatments performed on low-cost, high-precision metallic spheres on the suitability of these spheres to be used as artefacts for the calibration of optical sensors, specifically laser triangulation sensors. The first surface treatment is sandblasting (a mechanical process), whose effect has been studied and presented in previous work. The second treatment focused on in this paper is acid etching (a chemical process). The comparison has been performed by evaluating the same metrological characteristics on two identical groups of spheres of similar type (diameter and accuracy), each of which was subjected to a different treatment. It was necessary to obtain the reference values of the metrological parameters with high accuracy, which involved measuring the spheres with a coordinate measuring machine (CMM) by contact probing. Likewise, spheres were scanned by a laser triangulation sensor mounted on the same CMM. The results derived from both the contact and laser measurements and before and after treating the surfaces were used to compare four parameters: point density, sphere diameter, sphere form deviation, and standard deviation of the best-fit sphere to the corresponding point cloud. This research has revealed that acid etching produces better optical qualities on the surfaces than the mirror-like original ones, thus enhancing the laser sensor capturing ability. However, such chemical etching has affected the metrological characteristics of the spheres to a greater extent than that produced by sandblasting. This difference is due to the variability of the chemical etching, caused by the high aggressiveness of the acid, which makes the process very sensitive to the time of exposure to the acid and the orientations of the spheres in the bath.

6.
Materials (Basel) ; 14(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576407

RESUMO

To ensure that measurements can be made with non-contact metrology technologies, it is necessary to use verification and calibration procedures using precision artefacts as reference elements. In this environment, the need for increasingly accurate but also more cost-effective calibration artefacts is a clear demand in industry. The aim of this work is to demonstrate the feasibility of using low-cost precision spheres as reference artefacts in calibration and verification procedures of non-contact metrological equipment. Specifically, low-cost precision stainless steel spheres are used as reference artefacts. Obviously, for such spheres to be used as standard artefacts, it is necessary to change their optical behavior by removing their high brightness. For this purpose, the spheres are subjected to a manual sandblasting process, which is also a very low-cost process. The equipment used to validate the experiment is a laser triangulation sensor mounted on a Coordinate Measuring Machine (CMM). The CMM touch probe, which is much more accurate, will be used as a device for measuring the influence of sandblasting on the spheres. Subsequently, the influence of this post-processing is also checked with the laser triangulation sensor. Ultimately, the improvement in the quality of the point clouds captured by the laser sensor will be tested after removing the brightness, which distorts and reduces the quantity of points as well as the quality of the point clouds. In addition to the number of points obtained, the parameters used to study the effect of sandblasting on each sphere, both in contact probing and laser scanning, are the measured diameter, the form error, as well as the standard deviation of the point cloud regarding the best-fit sphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA