Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179666

RESUMO

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Assuntos
Cromatina , Placenta , Animais , Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Evolução Molecular , Feminino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Gravidez , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Immunity ; 55(4): 718-733.e8, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35349789

RESUMO

Resident memory B (BRM) cells develop and persist in the lungs of influenza-infected mice and humans; however, their contribution to recall responses has not been defined. Here, we used two-photon microscopy to visualize BRM cells within the lungs of influenza -virus immune and reinfected mice. Prior to re-exposure, BRM cells were sparsely scattered throughout the tissue, displaying limited motility. Within 24 h of rechallenge, these cells increased their migratory capacity, localized to infected sites, and subsequently differentiated into plasma cells. Alveolar macrophages mediated this process, in part by inducing expression of chemokines CXCL9 and CXCL10 from infiltrating inflammatory cells. This led to the recruitment of chemokine receptor CXCR3-expressing BRM cells to infected regions and increased local antibody concentrations. Our study uncovers spatiotemporal mechanisms that regulate lung BRM cell reactivation and demonstrates their capacity to rapidly deliver antibodies in a highly localized manner to sites of viral replication.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Anticorpos , Humanos , Memória Imunológica , Células B de Memória , Camundongos
3.
Am J Hum Genet ; 111(2): 338-349, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228144

RESUMO

Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.


Assuntos
Cardiopatias Congênitas , Transcriptoma , Humanos , Animais , Camundongos , Exoma/genética , Cardiopatias Congênitas/genética , Sequenciamento do Exoma , Aprendizado de Máquina , Análise de Célula Única/métodos , Enzimas Ativadoras de Ubiquitina/genética
4.
Nature ; 592(7852): 93-98, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33568816

RESUMO

Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.


Assuntos
Extremidades , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , RNA Longo não Codificante/genética , Deleção de Sequência/genética , Transcrição Gênica , Ativação Transcricional/genética , Animais , Linhagem Celular , Cromatina/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos
5.
Theor Appl Genet ; 136(5): 121, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37119337

RESUMO

KEY MESSAGE: The use of multi-environment trials to test yield-related traits in a diverse alfalfa panel allowed to find multiple molecular markers associated with complex agronomic traits. Yield is one of the most important target traits in alfalfa breeding; however, yield is a complex trait affected by genetic and environmental factors. In this study, we used multi-environment trials to test yield-related traits in a diverse panel composed of 200 alfalfa accessions and varieties. Phenotypic data of maturity stage measured as mean stage by count (MSC), dry matter content, plant height (PH), biomass yield (Yi), and fall dormancy (FD) were collected in three locations in Idaho, Oregon, and Washington from 2018 to 2020. Single-trial and stagewise analyses were used to obtain estimated trait means of entries by environment. The plants were genotyped using a genotyping by sequencing approach and obtained a genotypic matrix with 97,345 single nucleotide polymorphisms. Genome-wide association studies identified a total of 84 markers associated with the traits analyzed. Of those, 29 markers were in noncoding regions and 55 markers were in coding regions. Ten significant SNPs at the same locus were associated with FD and they were linked to a gene annotated as a nuclear fusion defective 4-like (NFD4). Additional SNPs associated with MSC, PH, and Yi were annotated as transcription factors such as Cysteine3Histidine (C3H), Hap3/NF-YB family, and serine/threonine-protein phosphatase 7 proteins, respectively. Our results provide insight into the genetic factors that influence alfalfa maturity, yield, and dormancy, which is helpful to speed up the genetic gain toward alfalfa yield improvement.


Assuntos
Estudo de Associação Genômica Ampla , Medicago sativa , Medicago sativa/genética , Locos de Características Quantitativas , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Brain ; 145(3): 964-978, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34919646

RESUMO

Idiopathic Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease aetiology remains largely unknown. To date, Parkinson's disease research has mainly focused on nigral dopaminergic neurons, although recent studies suggest disease-related changes also in non-neuronal cells and in midbrain regions beyond the substantia nigra. While there is some evidence for glial involvement in Parkinson's disease, the molecular mechanisms remain poorly understood. The aim of this study was to characterize the contribution of all cell types of the midbrain to Parkinson's disease pathology by single-nuclei RNA sequencing and to assess the cell type-specific risk for Parkinson's disease using the latest genome-wide association study. We profiled >41 000 single-nuclei transcriptomes of post-mortem midbrain from six idiopathic Parkinson's disease patients and five age-/sex-matched controls. To validate our findings in a spatial context, we utilized immunolabelling of the same tissues. Moreover, we analysed Parkinson's disease-associated risk enrichment in genes with cell type-specific expression patterns. We discovered a neuronal cell cluster characterized by CADPS2 overexpression and low TH levels, which was exclusively present in idiopathic Parkinson's disease midbrains. Validation analyses in laser-microdissected neurons suggest that this cluster represents dysfunctional dopaminergic neurons. With regard to glial cells, we observed an increase in nigral microglia in Parkinson's disease patients. Moreover, nigral idiopathic Parkinson's disease microglia were more amoeboid, indicating an activated state. We also discovered a reduction in idiopathic Parkinson's disease oligodendrocyte numbers with the remaining cells being characterized by a stress-induced upregulation of S100B. Parkinson's disease risk variants were associated with glia- and neuron-specific gene expression patterns in idiopathic Parkinson's disease cases. Furthermore, astrocytes and microglia presented idiopathic Parkinson's disease-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signalling. While reactive patient astrocytes showed CD44 overexpression, idiopathic Parkinson's disease microglia revealed a pro-inflammatory trajectory characterized by elevated levels of IL1B, GPNMB and HSP90AA1. Taken together, we generated the first single-nuclei RNA sequencing dataset from the idiopathic Parkinson's disease midbrain, which highlights a disease-specific neuronal cell cluster as well as 'pan-glial' activation as a central mechanism in the pathology of the movement disorder. This finding warrants further research into inflammatory signalling and immunomodulatory treatments in Parkinson's disease.


Assuntos
Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Glicoproteínas de Membrana/metabolismo , Mesencéfalo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
8.
Genet Med ; 24(10): 2187-2193, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962790

RESUMO

PURPOSE: We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. METHODS: Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. RESULTS: We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. CONCLUSION: In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome.


Assuntos
Artrogripose , Contratura , Proteínas ADAMTS , Animais , Artrogripose/genética , Consanguinidade , Contratura/genética , Homozigoto , Humanos , Camundongos , Mutação , Linhagem , Fenótipo
9.
Mov Disord ; 37(7): 1405-1415, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460111

RESUMO

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES: We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS: We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS: Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS: Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
DNA Mitocondrial , Doença de Parkinson , Ubiquitina-Proteína Ligases , DNA Mitocondrial/genética , Humanos , Inflamação/genética , Lipopolissacarídeos/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
10.
J Evol Biol ; 34(8): 1333-1339, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101952

RESUMO

Understanding the mechanisms that underlie chromosome evolution could provide insights into the processes underpinning the origin, persistence and evolutionary tempo of lineages. Here, we present the first database of chromosome counts for animals (the Animal Chromosome Count database, ACC) summarizing chromosome numbers for ~15,000 species. We found remarkable a similarity in the distribution of chromosome counts between animals and flowering plants. Nevertheless, the similarity in the distribution of chromosome numbers between animals and plants is likely to be explained by different drivers. For instance, we found that while animals and flowering plants exhibit similar frequencies of speciation-related changes in chromosome number, plant speciation is more often related to changes in ploidy. By leveraging the largest data set of chromosome counts for animals, we describe a previously undocumented pattern across the Tree of Life-animals and flowering plants show remarkably similar distributions of haploid chromosome numbers.


Assuntos
Magnoliopsida , Animais , Cromossomos , Magnoliopsida/genética , Filogenia , Plantas/genética , Poliploidia
12.
BMC Microbiol ; 14: 161, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24946775

RESUMO

BACKGROUND: Molecular typing of pathogen populations is an important tool for the development of effective strategies for disease control. Diverse molecular markers have been used to characterize populations of Xanthomonas axonopodis pv. manihotis (Xam), the main bacterial pathogen of cassava. Recently, diversity and population dynamics of Xam in the Colombian Caribbean coast were estimated using AFLPs, where populations were found to be dynamic, diverse and with haplotypes unstable across time. Aiming to examine the current state of pathogen populations located in the Colombian Eastern Plains, we also used AFLP markers and we evaluated the usefulness of Variable Number Tandem Repeats (VNTRs) as new molecular markers for the study of Xam populations. RESULTS: The population analyses showed that AFLP and VNTR provide a detailed and congruent description of Xam populations from the Colombian Eastern Plains. These two typing strategies clearly separated strains from the Colombian Eastern Plains into distinct populations probably because of geographical distance. Although the majority of analyses were congruent between typing markers, fewer VNTRs were needed to detect a higher number of genetic populations of the pathogen as well as a higher genetic flow among sampled locations than those detected by AFLPs. CONCLUSIONS: This study shows the advantages of VNTRs over AFLPs in the surveillance of pathogen populations and suggests the implementation of VNTRs in studies that involve large numbers of Xam isolates in order to obtain a more detailed overview of the pathogen to improve the strategies for disease control.


Assuntos
Variação Genética , Manihot/microbiologia , Tipagem Molecular/métodos , Doenças das Plantas/microbiologia , Xanthomonas axonopodis/classificação , Xanthomonas axonopodis/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Análise por Conglomerados , Colômbia , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Repetições Minissatélites , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Xanthomonas axonopodis/isolamento & purificação
13.
Mol Metab ; 79: 101850, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065435

RESUMO

OBJECTIVE: The metabolic benefits of GLP-1 receptor (GLP-1R) agonists on glycemic and weight control are well established as therapy for type 2 diabetes and obesity. Glucagon's ability to increase energy expenditure is well described, and the combination of these mechanisms-of-actions has the potential to further lower hepatic steatosis in metabolic disorders and could therefore be attractive for the treatment for non-alcoholic steatohepatitis (NASH). Here, we have investigated the effects of a dual GLP-1/glucagon receptor agonist NN1177 on hepatic steatosis, fibrosis, and inflammation in a preclinical mouse model of NASH. Having observed strong effects on body weight loss in a pilot study with NN1177, we hypothesized that direct engagement of the hepatic glucagon receptor (GCGR) would result in a superior effect on steatosis and other liver related parameters as compared to the GLP-1R agonist semaglutide at equal body weight. METHODS: Male C57Bl/6 mice were fed a diet high in trans-fat, fructose, and cholesterol (Diet-Induced Obese (DIO)-NASH) for 36 weeks. Following randomization based on the degree of fibrosis at baseline, mice were treated once daily with subcutaneous administration of a vehicle or three different doses of NN1177 or semaglutide for 8 weeks. Hepatic steatosis, inflammation and fibrosis were assessed by immunohistochemistry and morphometric analyses. Plasma levels of lipids and liver enzymes were determined, and hepatic gene expression was analyzed by RNA sequencing. RESULTS: NN1177 dose-dependently reduced body weight up to 22% compared to vehicle treatment. Plasma levels of ALT, a measure of liver injury, were reduced in all treatment groups with body weight loss. The dual agonist reduced hepatic steatosis to a greater extent than semaglutide at equal body weight loss, as demonstrated by three independent methods. Both the co-agonist and semaglutide significantly decreased histological markers of inflammation such as CD11b and Galectin-3, in addition to markers of hepatic stellate activation (αSMA) and fibrosis (Collagen I). Interestingly, the maximal beneficial effects on above mentioned clinically relevant endpoints of NN1177 treatment on hepatic health appear to be achieved with the middle dose tested. Administering the highest dose resulted in a further reduction of liver fat and accompanied by a massive induction in genes involved in oxidative phosphorylation and resulted in exaggerated body weight loss and a downregulation of a module of co-expressed genes involved in steroid hormone biology, bile secretion, and retinol and linoleic acid metabolism that are also downregulated due to NASH itself. CONCLUSIONS: These results indicate that, in a setting of overnutrition, the liver health benefits of activating the fasting-related metabolic pathways controlled by the glucagon receptor displays a bell-shaped curve. This observation is of interest to the scientific community, due to the high number of ongoing clinical trials attempting to leverage the positive effects of glucagon biology to improve metabolic health.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Glucagon , Receptores de Glucagon/genética , Diabetes Mellitus Tipo 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Projetos Piloto , Obesidade/metabolismo , Peso Corporal , Dieta , Cirrose Hepática/metabolismo , Redução de Peso , Peptídeo 1 Semelhante ao Glucagon/agonistas , Inflamação , Biópsia
14.
Nat Commun ; 14(1): 2034, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041138

RESUMO

Heterotopic ossification is a disorder caused by abnormal mineralization of soft tissues in which signaling pathways such as BMP, TGFß and WNT are known key players in driving ectopic bone formation. Identifying novel genes and pathways related to the mineralization process are important steps for future gene therapy in bone disorders. In this study, we detect an inter-chromosomal insertional duplication in a female proband disrupting a topologically associating domain and causing an ultra-rare progressive form of heterotopic ossification. This structural variant lead to enhancer hijacking and misexpression of ARHGAP36 in fibroblasts, validated here by orthogonal in vitro studies. In addition, ARHGAP36 overexpression inhibits TGFß, and activates hedgehog signaling and genes/proteins related to extracellular matrix production. Our work on the genetic cause of this heterotopic ossification case has revealed that ARHGAP36 plays a role in bone formation and metabolism, outlining first details of this gene contributing to bone-formation and -disease.


Assuntos
Proteínas Hedgehog , Ossificação Heterotópica , Feminino , Humanos , Tecido Conjuntivo/metabolismo , Proteínas Hedgehog/metabolismo , Ossificação Heterotópica/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta
15.
PLoS One ; 17(5): e0265604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507553

RESUMO

Deterioration in the quality of a person's voice and speech is an early marker of Parkinson's disease (PD). In humans, the neural circuit that supports vocal motor control consists of a cortico-basal ganglia-thalamo-cortico loop. The basal ganglia regions, striatum and globus pallidus, in this loop play a role in modulating the acoustic features of vocal behavior such as loudness, pitch, and articulatory rate. In PD, this area is implicated in pathogenesis. In animal models of PD, the accumulation of toxic aggregates containing the neuronal protein alpha-synuclein (αsyn) in the midbrain and striatum result in limb and vocal motor impairments. It has been challenging to study vocal impairments given the lack of well-defined cortico-basal ganglia circuitry for vocalization in rodent models. Furthermore, whether deterioration of voice quality early in PD is a direct result of αsyn-induced neuropathology is not yet known. Here, we take advantage of the well-characterized vocal circuits of the adult male zebra finch songbird to experimentally target a song-dedicated pathway, the anterior forebrain pathway, using an adeno-associated virus expressing the human wild-type αsyn gene, SNCA. We found that overexpression of αsyn in this pathway coincides with higher levels of insoluble, monomeric αsyn compared to control finches. Impairments in song production were also detected along with shorter and poorer quality syllables, which are the most basic unit of song. These vocal changes are similar to the vocal abnormalities observed in individuals with PD.


Assuntos
Tentilhões , Doença de Parkinson , Animais , Tentilhões/fisiologia , Humanos , Masculino , Prosencéfalo/fisiologia , Vocalização Animal/fisiologia , alfa-Sinucleína/genética
16.
Cells ; 10(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943880

RESUMO

Agronomic traits such as biomass yield and abiotic stress tolerance are genetically complex and challenging to improve through conventional breeding approaches. Genomic selection (GS) is an alternative approach in which genome-wide markers are used to determine the genomic estimated breeding value (GEBV) of individuals in a population. In alfalfa (Medicago sativa L.), previous results indicated that low to moderate prediction accuracy values (<70%) were obtained in complex traits, such as yield and abiotic stress resistance. There is a need to increase the prediction value in order to employ GS in breeding programs. In this paper we reviewed different statistic models and their applications in polyploid crops, such as alfalfa and potato. Specifically, we used empirical data affiliated with alfalfa yield under salt stress to investigate approaches that use DNA marker importance values derived from machine learning models, and genome-wide association studies (GWAS) of marker-trait association scores based on different GWASpoly models, in weighted GBLUP analyses. This approach increased prediction accuracies from 50% to more than 80% for alfalfa yield under salt stress. Finally, we expended the weighted GBLUP approach to potato and analyzed 13 phenotypic traits and obtained similar results. This is the first report on alfalfa to use variable importance and GWAS-assisted approaches to increase the prediction accuracy of GS, thus helping to select superior alfalfa lines based on their GEBVs.


Assuntos
Genômica , Medicago sativa/genética , Característica Quantitativa Herdável , Seleção Genética , Poliploidia , Estatística como Assunto
18.
Sci Rep ; 7(1): 1999, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515464

RESUMO

Comorbid diabetes mellitus (DM) increases tuberculosis (TB) risk and adverse outcomes but the pathological interactions between DM and TB remain incompletely understood. We performed an integrative analysis of whole blood gene expression and plasma analytes, comparing South Indian TB patients with and without DM to diabetic and non-diabetic controls without TB. Luminex assay of plasma cytokines and growth factors delineated a distinct biosignature in comorbid TBDM in this cohort. Transcriptional profiling revealed elements in common with published TB signatures from cohorts that excluded DM. Neutrophil count correlated with the molecular degree of perturbation, especially in TBDM patients. Body mass index and HDL cholesterol were negatively correlated with molecular degree of perturbation. Diabetic complication pathways including several pathways linked to epigenetic reprogramming were activated in TBDM above levels observed with DM alone. Our data provide a rationale for trials of host-directed therapies in TBDM, targeting neutrophilic inflammation and diabetic complication pathways to address the greater morbidity and mortality associated with this increasingly prevalent dual burden of communicable and non-communicable diseases.


Assuntos
Complicações do Diabetes , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/imunologia , Imunidade , Tuberculose/epidemiologia , Tuberculose/imunologia , Biomarcadores , Comorbidade , Biologia Computacional/métodos , Citocinas/sangue , Citocinas/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade/genética , Índia/epidemiologia , Masculino , Proteoma , Proteômica/métodos , Vigilância em Saúde Pública , Fatores de Risco , Transcriptoma , Tuberculose/genética , Tuberculose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA