Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(6): 4052-4059, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117759

RESUMO

Nanomechanical resonators make exquisite force sensors due to their small footprint, low dissipation, and high frequencies. Because the lowest resolvable force is limited by ambient thermal noise, resonators are either operated at cryogenic temperatures or coupled to a high-finesse optical or microwave cavity to reach sub aN Hz-1/2 sensitivity. Here, we show that operating a monolayer WS2 nanoresonator in the strongly nonlinear regime can lead to comparable force sensitivities at room temperature. Cavity interferometry was used to transduce the nonlinear response of the nanoresonator, which was characterized by multiple pairs of 1:1 internal resonance. Some of the modes exhibited exotic line shapes due to the appearance of Hopf bifurcations, where the bifurcation frequency varied linearly with the driving force and forms the basis of the advanced sensing modality. The modality is less sensitive to the measurement bandwidth, limited only by the intrinsic frequency fluctuations, and therefore, advantageous in the detection of weak incoherent forces.

2.
Adv Mater ; 33(5): e2005275, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33349995

RESUMO

Kirigami structures provide a promising approach to transform flat films into 3D complex structures that are difficult to achieve by conventional fabrication approaches. By designing the cutting geometry, it is shown that distinct buckling-induced out-of-plane configurations can be obtained, separated by a sharp transition characterized by a critical geometric dimension of the structures. In situ electron microscopy experiments reveal the effect of the ratio between the in-plane cut size and film thickness on out-of-plane configurations. Moreover, geometrically nonlinear finite element analyses (FEA) accurately predict the out-of-plane modes measured experimentally, their transition as a function of cut geometry, and provide the stress-strain response of the kirigami structures. The combined computational-experimental approach and results reported here represent a step forward in the characterization of thin films experiencing buckling-induced out-of-plane shape transformations and provide a path to control 3D configurations of micro- and nanoscale buckling-induced kirigami structures. The out-of-plane configurations promise great utility in the creation of micro- and nanoscale systems that can harness such structural behavior, such as optical scanning micromirrors, novel actuators, and nanorobotics. This work is of particular significance as the kirigami dimensions approach the sub-micrometer scale which is challenging to achieve with conventional micro-electromechanical system technologies.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31093601

RESUMO

Curved micromechanical beams are a versatile platform for exploring multistable behavior, with potential applications in mechanical based logic elements and electrical and optical switches. Here we demonstrate bidirectional electrostatic actuation of a bistable, latched, micromechanical beam by the same electrode, which was used for the snap-through switching of the device. The release of the mechanically-latched beam is achieved by pre-loading the structure using a rising voltage applied to the electrode, followed by a sudden decrease of the voltage. This abrupt removal of the loading results in a transient response and dynamic snap-back of the beam.

4.
Appl Phys Lett ; 108(7)2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27141103

RESUMO

We demonstrate dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. Nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show, that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA