Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
EMBO J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951609

RESUMO

Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.

2.
Nature ; 610(7933): 704-712, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224396

RESUMO

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


Assuntos
Estatura , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Humanos , Estatura/genética , Frequência do Gene/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Europa (Continente)/etnologia , Tamanho da Amostra , Fenótipo
3.
Brain Behav Immun ; 118: 117-127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402916

RESUMO

Early-life stress (ELS) has been robustly associated with a range of poor mental and physical health outcomes. Recent studies implicate the gut microbiome in stress-related mental, cardio-metabolic and immune health problems, but research on humans is scarce and thus far often based on small, selected samples, often using retrospective reports of ELS. We examined associations between ELS and the human gut microbiome in a large, population-based study of children. ELS was measured prospectively from birth to 10 years of age in 2,004 children from the Generation R Study. We studied overall ELS, as well as unique effects of five different ELS domains, including life events, contextual risk, parental risk, interpersonal risk, and direct victimization. Stool microbiome was assessed using 16S rRNA sequencing at age 10 years and data were analyzed at multiple levels (i.e. α- and ß-diversity indices, individual genera and predicted functional pathways). In addition, we explored potential mediators of ELS-microbiome associations, including diet at age 8 and body mass index at 10 years. While no associations were observed between overall ELS (composite score of five domains) and the microbiome after multiple testing correction, contextual risk - a specific ELS domain related to socio-economic stress, including risk factors such as financial difficulties and low maternal education - was significantly associated with microbiome variability. This ELS domain was associated with lower α-diversity, with ß-diversity, and with predicted functional pathways involved, amongst others, in tryptophan biosynthesis. These associations were in part mediated by overall diet quality, a pro-inflammatory diet, fiber intake, and body mass index (BMI). These results suggest that stress related to socio-economic adversity - but not overall early life stress - is associated with a less diverse microbiome in the general population, and that this association may in part be explained by poorer diet and higher BMI. Future research is needed to test causality and to establish whether modifiable factors such as diet could be used to mitigate the negative effects of socio-economic adversity on the microbiome and related health consequences.


Assuntos
Experiências Adversas da Infância , Microbioma Gastrointestinal , Criança , Humanos , Microbioma Gastrointestinal/genética , Estudos Retrospectivos , RNA Ribossômico 16S/genética , Fezes
4.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791593

RESUMO

Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.


Assuntos
Densidade Óssea , Doenças Cardiovasculares , Osteoporose Pós-Menopausa , Polimorfismo de Nucleotídeo Único , Transcriptoma , Humanos , Feminino , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , Idoso , Pessoa de Meia-Idade , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Idoso de 80 Anos ou mais , Densidade Óssea/genética , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética
5.
Brain Behav Immun ; 108: 188-196, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494050

RESUMO

The link between the gut microbiome and the brain has gained increasing scientific and public interest for its potential to explain psychiatric risk. While differences in gut microbiome composition have been associated with several mental health problems, evidence to date has been largely based on animal models and human studies with modest sample sizes. In this cross-sectional study in 1,784 ten-year-old children from the multi-ethnic, population-based Generation R Study, we aimed to characterize associations of the gut microbiome with child mental health problems. Gut microbiome was assessed from stool samples using 16S rRNA sequencing. We focused on overall psychiatric symptoms as well as with specific domains of emotional and behavioral problems, assessed via the maternally rated Child Behavior Checklist. While we observed lower gut microbiome diversity in relation to higher overall and specific mental health problems, associations were not significant. Likewise, we did not identify any taxonomic feature associated with mental health problems after multiple testing correction, although suggestive findings indicated depletion of genera previously associated with psychiatric disorders, including Hungatella, Anaerotruncus and Oscillospiraceae. The identified compositional abundance differences were found to be similar across all mental health problems. Finally, we did not find significant enrichment for specific microbial functions in relation to mental health problems. In conclusion, based on the largest sample examined to date, we do not find clear evidence of associations between gut microbiome diversity, taxonomies or functions and mental health problems in the general pediatric population. In future, the use of longitudinal designs with repeated measurements of microbiome and psychiatric outcomes will be critical to identify whether and when associations between the gut microbiome and mental health emerge across development and into adulthood.


Assuntos
Microbioma Gastrointestinal , Transtornos Mentais , Animais , Humanos , Criança , Microbioma Gastrointestinal/genética , Saúde Mental , Estudos Transversais , RNA Ribossômico 16S/genética
6.
Nature ; 542(7640): 186-190, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28146470

RESUMO

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.


Assuntos
Estatura/genética , Frequência do Gene/genética , Variação Genética/genética , Proteínas ADAMTS/genética , Adulto , Alelos , Moléculas de Adesão Celular/genética , Feminino , Genoma Humano/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosaminoglicanos/biossíntese , Proteínas Hedgehog/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores Reguladores de Interferon/genética , Subunidade alfa de Receptor de Interleucina-11/genética , Masculino , Herança Multifatorial/genética , NADPH Oxidase 4 , NADPH Oxidases/genética , Fenótipo , Proteína Plasmática A Associada à Gravidez/metabolismo , Pró-Colágeno N-Endopeptidase/genética , Proteoglicanas/biossíntese , Proteólise , Receptores Androgênicos/genética , Somatomedinas/metabolismo
7.
Hepatology ; 73(3): 968-982, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32530501

RESUMO

BACKGROUND AND AIMS: Previous small studies have appraised the gut microbiome (GM) in steatosis, but large-scale studies are lacking. We studied the association of the GM diversity and composition, plasma metabolites, predicted functional metagenomics, and steatosis. APPROACH AND RESULTS: This is a cross-sectional analysis of the prospective population-based Rotterdam Study. We used 16S ribosomal RNA gene sequencing and determined taxonomy using the SILVA reference database. Alpha diversity and beta diversity were calculated using the Shannon diversity index and Bray-Curtis dissimilarities. Differences were tested across steatosis using permutational multivariate analysis of variance. Hepatic steatosis was diagnosed by ultrasonography. We subsequently selected genera using regularized regression. The functional metagenome was predicted based on the GM using Kyoto Encyclopedia of Genes and Genomes pathways. Serum metabolomics were assessed using high-throughput proton nuclear magnetic resonance. All analyses were adjusted for age, sex, body mass index, alcohol, diet, and proton-pump inhibitors. We included 1,355 participants, of whom 472 had steatosis. Alpha diversity was lower in steatosis (P = 1.1∙10-9 ), and beta diversity varied across steatosis strata (P = 0.001). Lasso selected 37 genera of which three remained significantly associated after adjustment (Coprococcus3: ß = -65; Ruminococcus Gauvreauiigroup: ß = 62; and Ruminococcus Gnavusgroup: ß = 45, Q-value = 0.037). Predicted metagenome analyses revealed that pathways of secondary bile-acid synthesis and biotin metabolism were present, and D-alanine metabolism was absent in steatosis. Metabolic profiles showed positive associations for aromatic and branched chain amino acids and glycoprotein acetyls with steatosis and R. Gnavusgroup, whereas these metabolites were inversely associated with alpha diversity and Coprococcus3. CONCLUSIONS: We confirmed, on a large-scale, the lower microbial diversity and association of Coprococcus and Ruminococcus Gnavus with steatosis. We additionally showed that steatosis and alpha diversity share opposite metabolic profiles.


Assuntos
Fígado Gorduroso/etiologia , Microbioma Gastrointestinal , Estudos Transversais , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Metabolômica , Metagenoma/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Fatores de Risco , Ruminococcus/metabolismo
8.
J Nutr ; 152(1): 276-285, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601595

RESUMO

BACKGROUND: Observational studies have reported associations between serum phosphate and BMI in specific clinical settings, but the nature of this relation in the general population is unclear. OBJECTIVES: The aim of this study was twofold: to investigate the association between serum phosphate and BMI and body composition, as well as to explore evidence of causality through a bidirectional one-sample Mendelian randomization (MR) in the population-based Rotterdam Study (RS). METHODS: Observational associations between phosphate (mg/dL) and BMI, lean mass, and fat percentage (fat%), estimated by DXA, were analyzed using multivariable regression models in 9202 participants aged 45-100 y from 3 RS cohorts. The role of serum leptin was examined in a subgroup of 1089 participants. For MR analyses, allele scores with 6 single-nucleotide polymorphisms (SNPs) for phosphate and 905 SNPs for BMI were constructed in 7983 participants. RESULTS: Phosphate was inversely associated with BMI in the total population (ß: -0.89; 95% CI: -1.17, -0.62), and stronger in women (ß: -1.92; 95% CI: -2.20, -1.65) than in men (ß: -0.37; 95% CI: -0.68, -0.06) (P-interaction < 0.05). Adjustment for leptin did not change results in men. In women, adjustment for leptin attenuated the association, but it was not abolished (ß: -0.94; 95% CI: -1.45, -0.42). Phosphate was inversely associated with fat%, but not with lean mass, in both sexes. MR analyses suggested a causal effect of BMI on serum phosphate (ß: -0.01; 95% CI: -0.02, 0.00) but not vice versa. CONCLUSIONS: Serum phosphate was inversely associated with BMI and fat% in a population-based study of middle-aged and older adults, with a stronger effect in women than in men. Adjusting for leptin attenuated this relation in women only. MR results suggest a causal effect of BMI on phosphate but not vice versa. An underlying sex dimorphism in phosphate homeostasis should be further explored.


Assuntos
Composição Corporal , Análise da Randomização Mendeliana , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Estudos Transversais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana/métodos , Pessoa de Meia-Idade , Fosfatos , Polimorfismo de Nucleotídeo Único
9.
J Allergy Clin Immunol ; 148(2): 612-620, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33862008

RESUMO

BACKGROUND: Infants with less diverse gut microbiota seem to have higher risks of atopic diseases in early life, but any associations at school age are unclear. OBJECTIVES: This study sought to examine the associations of diversity, relative abundance, and functional pathways of stool microbiota with atopic diseases in school-age children. METHODS: We performed a cross-sectional study within an existing population-based prospective cohort among 1440 children 10 years of age. On stool samples, 16S ribosomal RNA gene sequencing was performed, and taxonomic and functional tables were produced. Physician-diagnosed eczema, allergy, and asthma were measured by questionnaires, allergic sensitization by skin prick tests, and lung function by spirometry. RESULTS: The α-diversity of stool microbiota was associated with a decreased risk of eczema (odds ratio [OR], 0.98; 95% CI, 0.97, 1.00), and ß-diversity was associated with physician-diagnosed inhalant allergy (R2 = 0.001; P = .047). Lachnospiraceae, Ruminococcaceae_UCG-005, and Christensenellaceae_R-7_group species were associated with decreased risks of eczema, inhalant allergic sensitization, and physician-diagnosed inhalant allergy (OR range, 0.88-0.94; 95% CI range, 0.79-0.96 to 0.88-0.98), while Agathobacter species were associated with an increased risk of physician-diagnosed inhalant allergy (OR, 1.23; 95% CI, 1.08-1.42). Functional pathways related to heme and terpenoid biosynthesis were associated with decreased risks of physician-diagnosed inhalant allergy and asthma (OR range, 0.89-0.86; 95% CI range, 0.80-0.99 to 0.73-1.02). No associations of stool microbiota with lung function were observed. CONCLUSIONS: The diversity, relative abundance and functional pathways of stool microbiota were most consistently associated with physician-diagnosed inhalant allergy in school-age children and less consistently with other atopic diseases.


Assuntos
Bactérias , Eczema , Fezes/microbiologia , Microbioma Gastrointestinal/imunologia , Hipersensibilidade , Bactérias/classificação , Bactérias/genética , Bactérias/imunologia , Criança , Estudos Transversais , Eczema/imunologia , Eczema/microbiologia , Eczema/patologia , Feminino , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Hipersensibilidade/patologia , Masculino , Estudos Prospectivos
10.
Am J Hum Genet ; 102(1): 88-102, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304378

RESUMO

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.


Assuntos
Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Adolescente , Fatores Etários , Animais , Criança , Pré-Escolar , Loci Gênicos , Humanos , Lactente , Recém-Nascido , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Análise de Regressão
11.
Nature ; 526(7571): 112-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367794

RESUMO

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.


Assuntos
Densidade Óssea/genética , Fraturas Ósseas/genética , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Animais , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Europa (Continente)/etnologia , Exoma/genética , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genômica , Genótipo , Humanos , Camundongos , Análise de Sequência de DNA , População Branca/genética , Proteínas Wnt/genética
12.
Nature ; 518(7538): 187-196, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25673412

RESUMO

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.


Assuntos
Tecido Adiposo/metabolismo , Distribuição da Gordura Corporal , Estudo de Associação Genômica Ampla , Insulina/metabolismo , Locos de Características Quantitativas/genética , Adipócitos/metabolismo , Adipogenia/genética , Fatores Etários , Índice de Massa Corporal , Epigênese Genética , Europa (Continente)/etnologia , Feminino , Genoma Humano/genética , Humanos , Resistência à Insulina/genética , Masculino , Modelos Biológicos , Neovascularização Fisiológica/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Grupos Raciais/genética , Caracteres Sexuais , Transcrição Gênica/genética , Relação Cintura-Quadril
13.
Curr Osteoporos Rep ; 19(3): 347-357, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864574

RESUMO

PURPOSE OF THE REVIEW: The human gut harbors a complex community of microbes that influence many processes regulating musculoskeletal development and homeostasis. This review gives an update on the current knowledge surrounding the impact of the gut microbiota on musculoskeletal health, with an emphasis on research conducted over the last three years. RECENT FINDINGS: The gut microbiota and their metabolites are associated with sarcopenia, osteoporosis, osteoarthritis, and rheumatoid arthritis. The field is moving fast from describing simple correlations to pursue establishing causation through clinical trials. The gut microbiota and their microbial-synthesized metabolites hold promise for offering new potential alternatives for the prevention and treatment of musculoskeletal diseases given its malleability and response to environmental stimuli.


Assuntos
Microbioma Gastrointestinal/fisiologia , Homeostase/fisiologia , Doenças Musculoesqueléticas/prevenção & controle , Doenças Musculoesqueléticas/fisiopatologia , Humanos
14.
Curr Osteoporos Rep ; 19(5): 481-493, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33945105

RESUMO

PURPOSE OF REVIEW: Fractures are frequently encountered in paediatric practice. Although recurrent fractures in children usually unveil a monogenic syndrome, paediatric fracture risk could be shaped by the individual genetic background influencing the acquisition of bone mineral density, and therefore, the skeletal fragility as shown in adults. Here, we examine paediatric fractures from the perspective of monogenic and complex trait genetics. RECENT FINDINGS: Large-scale genome-wide studies in children have identified ~44 genetic loci associated with fracture or bone traits whereas ~35 monogenic diseases characterized by paediatric fractures have been described. Genetic variation can predispose to paediatric fractures through monogenic risk variants with a large effect and polygenic risk involving many variants of small effects. Studying genetic factors influencing peak bone attainment might help in identifying individuals at higher risk of developing early-onset osteoporosis and discovering drug targets to be used as bone restorative pharmacotherapies to prevent, or even reverse, bone loss later in life.


Assuntos
Fraturas Ósseas/genética , Fatores Etários , Densidade Óssea , Criança , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial , Osteoporose/genética , Fenótipo
15.
Hum Mol Genet ; 27(11): 2025-2038, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659830

RESUMO

The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sex-specific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N = 15 661, with replication N = 75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (ß = 0.06; P = 0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population.


Assuntos
Dedos/anatomia & histologia , Estudo de Associação Genômica Ampla , Testosterona/metabolismo , Adulto , Androgênios/metabolismo , Biomarcadores , Feminino , Dedos/crescimento & desenvolvimento , Variação Genética , Humanos , Masculino , Gravidez , Estudos Retrospectivos , Caracteres Sexuais , Testosterona/genética
16.
Hum Mol Genet ; 27(17): 3113-3127, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931343

RESUMO

Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Biomarcadores/análise , Cárie Dentária/genética , Dentição Permanente , Estudo de Associação Genômica Ampla/métodos , Fosfoproteínas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Fenótipo
17.
Am J Hum Genet ; 100(6): 865-884, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552196

RESUMO

Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.


Assuntos
Antropometria , Genoma Humano , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Análise de Sequência de DNA/métodos , Estatura/genética , Estudos de Coortes , Metilação de DNA/genética , Bases de Dados Genéticas , Feminino , Variação Genética , Humanos , Lipodistrofia/genética , Masculino , Metanálise como Assunto , Obesidade/genética , Mapeamento Físico do Cromossomo , Caracteres Sexuais , Síndrome , Reino Unido
18.
Am J Hum Genet ; 101(2): 227-238, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757204

RESUMO

Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 × 10-88). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78-2.78, p = 1.26 × 10-12). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19-1.64, p = 2.63 × 10-5) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/genética , Vitamina D/análogos & derivados , Frequência do Gene , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Esclerose Múltipla/etiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Vitamina D/sangue
19.
Hum Mol Genet ; 25(18): 4127-4142, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27559109

RESUMO

More than a million childhood diarrhoeal episodes occur worldwide each year, and in developed countries a considerable part of them are caused by viral infections. In this study, we aimed to search for genetic variants associated with diarrhoeal disease in young children by meta-analyzing genome-wide association studies, and to elucidate plausible biological mechanisms. The study was conducted in the context of the Early Genetics and Lifecourse Epidemiology (EAGLE) consortium. Data about diarrhoeal disease in two time windows (around 1 year of age and around 2 years of age) was obtained via parental questionnaires, doctor interviews or medical records. Standard quality control and statistical tests were applied to the 1000 Genomes imputed genotypic data. The meta-analysis (N = 5758) followed by replication (N = 3784) identified a genome-wide significant association between rs8111874 and diarrhoea at age 1 year. Conditional analysis suggested that the causal variant could be rs601338 (W154X) in the FUT2 gene. Children with the A allele, which results in a truncated FUT2 protein, had lower risk of diarrhoea. FUT2 participates in the production of histo-blood group antigens and has previously been implicated in the susceptibility to infections, including Rotavirus and Norovirus Gene-set enrichment analysis suggested pathways related to the histo-blood group antigen production, and the regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the immune and neuro-secretory systems were detected as relevant organs. In summary, this genome-wide association meta-analysis suggests the implication of the FUT2 gene in diarrhoeal disease in young children from the general population.


Assuntos
Diarreia/genética , Fucosiltransferases/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alelos , Pré-Escolar , Diarreia/patologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único , Galactosídeo 2-alfa-L-Fucosiltransferase
20.
Ann Rheum Dis ; 77(3): 378-385, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29170203

RESUMO

OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.


Assuntos
Cromossomos Humanos Par 2/genética , Fraturas por Osteoporose/genética , Fraturas da Coluna Vertebral/genética , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Pós-Menopausa , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA