Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(24): e2308304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308419

RESUMO

Lithium-ion batteries (LIBs) has been developed over the last three decades. Increased amount of silicon (Si) is added into graphite anode to increase the energy density of LIBs. However, the amount of Si is limited, due to its structural instability and poor electronic conductivity so a novel approach is needed to overcome these issues. In this work, the synthesized chromium silicide (CrSi2) doped Si nanoparticle anode material achieves an initial capacity of 1729.3 mAh g-1 at 0.2C and retains 1085 mAh g-1 after 500 cycles. The new anode also shows fast charge capability due to the enhanced electronic conductivity provided by CrSi2 dopant, delivering a capacity of 815.9 mAh g-1 at 1C after 1000 cycles with a capacity degradation rate of <0.05% per cycle. An in situ transmission electron microscopy is used to study the structural stability of the CrSi2-doped Si, indicating that the high control of CrSi2 dopant prevents the fracture of Si during lithiation and results in long cycle life. Molecular dynamics simulation shows that CrSi2 doping optimizes the crack propagation path and dissipates the fracture energy. In this work a comprehensive information is provided to study the function of metal ion doping in electrode materials.

2.
Phys Chem Chem Phys ; 23(33): 17766-17773, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-33729249

RESUMO

When high-energy electrons from a scanning transmission electron microscope (STEM) are incident on a liquid, the vast majority of the chemical reactions that are observed are induced by the radiolysis breakdown of the liquid molecules. In the study of liquids, the radiolysis products of pure water are well known, and their rate of formation for a given flux of high-energy electrons has been studied intensively over the last few years for uniform TEM illumination. In this paper, we demonstrate that the temporal and spatial distribution of the electron illumination can significantly affect the final density of radiolysis products in water and even change the type of reaction taking place. We simulate the complex array of possible spatial/temporal distributions of electrons that are accessible experimentally by controlling the size, the scan rate and the hopping distance of the electron probe in STEM mode and then compare the results to the uniformly illuminated TEM mode of imaging. By distributing the electron dose both spatially and temporally in the STEM through a randomised "spot-scan" mode of imaging, the diffusion overlap of the radiolysis products can be reduced, and the resulting reactions can be more readily controlled. This control allows the resolution of the images to be separated from the speed of the induced reaction (which is based on beam current alone) and this facet of the experiment will allow a wide range of chemical reactions to be uniquely tailored and observed in all liquid cell STEM experiments.

3.
J Am Chem Soc ; 141(23): 9292-9304, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117650

RESUMO

Mononuclear and dinuclear copper species were synthesized at the nodes of an NU-1000 metal-organic framework (MOF) via cation exchange and subsequent oxidation at 200 °C in oxygen. Copper-exchanged MOFs are active for selectively converting methane to methanol at 150-200 °C. At 150 °C and 1 bar methane, approximately a third of the copper centers are involved in converting methane to methanol. Methanol productivity increased by 3-4-fold and selectivity increased from 70% to 90% by increasing the methane pressure from 1 to 40 bar. Density functional theory showed that reaction pathways on various copper sites are able to convert methane to methanol, the copper oxyl sites with much lower free energies of activation. Combining studies of the stoichiometric activity with characterization by in situ X-ray absorption spectroscopy and density functional theory, we conclude that dehydrated dinuclear copper oxyl sites formed after activation at 200 °C are responsible for the activity.

4.
Langmuir ; 35(4): 862-869, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30645125

RESUMO

Electrodeposition is widely used to fabricate tunable nanostructured materials in applications ranging from biosensing to energy conversion. A model based on 3D island growth is widely accepted in the explanation of the initial stages of nucleation and growth in electrodeposition. However, there are regions in the electrodeposition parameter space where this model becomes inapplicable. We use liquid cell transmission electron microscopy along with post situ scanning electron microscopy to investigate electrodeposition in this parameter space, focusing on the effect of the supporting electrolyte, and to shed light on the nucleation and growth of palladium. Using a collection of electron microscopy images and current time transients recorded during electrodeposition, we discover that electrochemical aggregative growth, rather than 3D island growth, best describes the electrodeposition process. We then use this model to explain the change in the morphology of palladium electrodeposits from spherical to open clusters with nonspherical morphology when HCl is added to the electrolyte solution. The enhanced understanding of the early stages of palladium nucleation and growth and the role of electrolyte in this process provides a systematic route toward the electrochemical fabrication of nanostructured materials.

8.
J Am Chem Soc ; 139(30): 10294-10301, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28613861

RESUMO

Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

9.
J Am Chem Soc ; 139(30): 10410-10418, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28696712

RESUMO

Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis, and difference envelope density analysis, with electron microscopy imaging and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiOxHy clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield heterobimetallic metal-oxo nanowires. This bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering resistance of these clusters during the hydrogenation of light olefins.

10.
Nano Lett ; 14(3): 1293-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24559146

RESUMO

Development of novel electrolytes with increased electrochemical stability is critical for the next generation battery technologies. In situ electrochemical fluid cells provide the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under conditions directly relevant to the operation of practical batteries. In this paper, we have studied the breakdown of a range of inorganic/salt complexes relevant to state-of-the-art Li-ion battery systems by in situ (scanning) transmission electron microscopy ((S)TEM). In these experiments, the electron beam itself caused the localized electrochemical reaction that allowed us to observe electrolyte breakdown in real-time. The results of the in situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in situ liquid stage (S)TEM observations could be used to directly test new electrolyte designs and identify a smaller library of candidate solutions deserving of more detailed characterization. A systematic study of electrolyte degradation is also a necessary first step for any future controlled in operando liquid (S)TEM experiments intent on visualizing working batteries at the nanoscale.

11.
Electrochim Acta ; 122: 197-203, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24683266

RESUMO

Electrochemical deposition of crosslinked oxo-cyanoruthenate, Ru-O/CN-O, from a mixture of RuCl3 and K4Ru(CN)6 is known to yield a film on glassy carbon that promotes oxidations by a combination of electron and oxygen transfer. Layer-by-layer (LbL) deposition of this species and of a film formed by cycling of the electrode potential in a ZrO2 solution systematically increases the number of catalytically active sites of the Ru-O/CN-O on the electrode. The evaluation of the electrocatalytic activity was by cyclic voltammetric oxidation of cysteine at pH 2. Plots of the anodic peak current vs. the square root of scan rate were indicative of linear diffusion control of this oxidation, even in the absence of ZrO2, but the slopes of these linear plots increased with bilayer number, n, of (ZrO2 | Ru-O/CN-O) n . The latter observation is hypothesized to be due to an increased number of active sites for a given geometric electrode area, but proof required further study. To optimize utilization of the catalyst and to provide a size-exclusion characteristic to the electrode, the study was extended to LbL deposition of the composite in 50-nm pores of an organically modified silica film deposited by electrochemically assisted sol-gel processing using surface-bound poly(styrene sulfonate) nanospheres as a templating agent.

12.
Microsc Microanal ; 20(2): 484-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24755142

RESUMO

The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

13.
Nano Lett ; 13(12): 6106-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224495

RESUMO

Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.


Assuntos
Lítio/química , Nanofios/química , Silício/química , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
14.
J Solid State Electrochem ; 17(6): 1581-1590, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23935394

RESUMO

Modification of electrodes with nm-scale organically modified silica films with pores diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano crosslinks or gold nanoparticles protected by dirhodium-substituted phosophomolybdate (AuNP-Rh2PMo11), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. 10-nm pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH3)3SiOCH3 sol. 50-nm pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH3)3SiOCH3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN)63- and Ru(NH3)63+ demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh2PMo11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes.

15.
ACS Appl Mater Interfaces ; 15(13): 16714-16722, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961995

RESUMO

Selective oxidation reactions are an important class of the current chemical industry and will be highly important for future sustainable chemical production. Especially, the selective oxidation of primary alcohols is expected to be of high future interest, as alcohols can be obtained on technical scales from biomass fermentation. The oxidation of primary alcohols produces aldehydes, which are important intermediates. While selective methanol oxidation is industrially established, the commercial catalyst suffers from deactivation. Ethanol selective oxidation is not commercialized but would give access to sustainable acetaldehyde production when using renewable ethanol. In this work, it is shown that employing 2D MXenes as building blocks allows one to design a nanostructured oxide catalyst composed of mixed valence vanadium oxides, which outperforms on both reactions known materials by nearly an order of magnitude in activity, while showing high selectivity and stability. The study shows that the synthesis route employing 2D materials is key to obtain these attractive catalysts. V4C3Tx MXene structured as an aerogel precursor needs to be employed and mildly oxidized in an alcohol and oxygen atmosphere to result in the aspired nanostructured catalyst composed of mixed valence VO2, V6O13, and V3O7. Very likely, the bulk stable reduced valence state of the material together coupled with the nanorod arrangement allows for unprecedented oxygen mobility as well as active sites and results in an ultra-active catalyst.

16.
ACS Energy Lett ; 7(10): 3524-3530, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277132

RESUMO

High-capacity Ni-rich layered metal oxide cathodes are highly desirable to increase the energy density of lithium-ion batteries. However, these materials suffer from poor cycling performance, which is exacerbated by increased cell voltage. We demonstrate here the detrimental effect of ethylene carbonate (EC), a core component in conventional electrolytes, when NMC811 (LiNi0.8Mn0.1Co0.1O2) is charged above 4.4 V vs Li/Li+-the onset potential for lattice oxygen release. Oxygen loss is enhanced by EC-containing electrolytes-compared to EC-free-and correlates with more electrolyte oxidation/breakdown and cathode surface degradation, which increase concurrently above 4.4 V. In contrast, NMC111 (LiNi0.33Mn0.33Co0.33O2), which does not release oxygen up to 4.6 V, shows a similar extent of degradation irrespective of the electrolyte. This work highlights the incompatibility between conventional EC-based electrolytes and Ni-rich cathodes (more generally, cathodes that release lattice oxygen such as Li-/Mn-rich and disordered rocksalt cathodes) and motivates further work on wider classes of electrolytes and additives.

17.
ACS Appl Mater Interfaces ; 14(11): 13206-13222, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258927

RESUMO

The chemical and electrochemical reactions at the positive electrode-electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.

18.
J Vis Exp ; (178)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34927608

RESUMO

A method for facile synthesis of nanostructured catalysts supported on carbon nanotubes with atomically dispersed cobalt and nitrogen dopant is presented herein. The novel strategy is based on a facile one-pot pyrolysis treatment of cobalt (II) acetylacetonate and nitrogen-rich organic precursors under Ar atmosphere at 800 °C, resulting in the formation of Co- and N- co-doped carbon nanotube with earthworm-like morphology. The obtained catalyst was found to have a high density of defect sites, as confirmed by Raman spectroscopy. Here, cobalt (II) nanoparticles were stabilized on the atomically dispersed cobalt- and nitrogen-doped carbon nanotubes. The catalyst was confirmed to be effective in the catalytic hydrolysis of ammonia borane, in which the turnover frequency was 5.87 mol H2·molCo-1·min-1, and the specific hydrogen generation rate was determined to be 2447 mL H2·gCo-1·min-1. A synergistic function between the Co nanoparticle and the doped carbon nanotubes was proposed for the first time in the catalytic hydrolysis of ammonia borane reaction under a mild condition. The resulting hydrogen production with its high energy density and minimal refueling time could be suitable for future development as energy sources for mobile and stationary applications such as road trucks and forklifts in transport and logistics.

19.
Nat Commun ; 11(1): 6085, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257681

RESUMO

Electrolyte-filled subnanometre pores exhibit exciting physics and play an increasingly important role in science and technology. In supercapacitors, for instance, ultranarrow pores provide excellent capacitive characteristics. However, ions experience difficulties in entering and leaving such pores, which slows down charging and discharging processes. In an earlier work we showed for a simple model that a slow voltage sweep charges ultranarrow pores quicker than an abrupt voltage step. A slowly applied voltage avoids ionic clogging and co-ion trapping-a problem known to occur when the applied potential is varied too quickly-causing sluggish dynamics. Herein, we verify this finding experimentally. Guided by theoretical considerations, we also develop a non-linear voltage sweep and demonstrate, with molecular dynamics simulations, that it can charge a nanopore even faster than the corresponding optimized linear sweep. For discharging we find, with simulations and in experiments, that if we reverse the applied potential and then sweep it to zero, the pores lose their charge much quicker than they do for a short-circuited discharge over their internal resistance. Our findings open up opportunities to greatly accelerate charging and discharging of subnanometre pores without compromising the capacitive characteristics, improving their importance for energy storage, capacitive deionization, and electrochemical heat harvesting.

20.
Nanoscale ; 12(41): 21248-21254, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33063813

RESUMO

Beam damage caused during acquisition of the highest resolution images is the current limitation in the vast majority of experiments performed in a scanning transmission electron microscope (STEM). While the principles behind the processes of knock-on and radiolysis damage are well-known (as are other contributing effects, such as heat and electric fields), understanding how and especially when beam damage is distributed across the entire sample volume during an experiment has not been examined in detail. Here we use standard models for damage and diffusion to elucidate how beam damage spreads across the sample as a function of the microscope conditions to determine an "optimum" sampling approach that maximises the high-resolution information in any image acquisition. We find that the standard STEM approach of scanning an image sequentially accelerates damage because of increased overlap of diffusion processes. These regions of accelerated damage can be significantly decelerated by increasing the distance between the acquired pixels in the scan, forming a "spotscan" mode of acquisition. The optimum distance between these pixels can be broadly defined by the fundamental properties of each material, allowing experiments to be designed for specific beam sensitive materials. As an added bonus, if we use inpainting to reconstruct the sparse distribution of pixels in the image we can significantly increase the speed of the STEM process, allowing dynamic phenomena, and the onset of damage, to be studied directly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA