Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oral Dis ; 23(6): 709-720, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27514027

RESUMO

Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate. These cofactors have been targeted when devising KDM inhibitors, which may yield therapeutic benefit. KDMs and their counterpart Lys methyltransferases (KMTs) regulate multiple biological processes, including oncogenesis and inflammation. KDMs' functional interactions with retinoblastoma (Rb) and E2 factor (E2F) target promoters illustrate their regulatory role in cell cycle progression and oncogenesis. Recent findings also demonstrate the control of inflammation and immune functions by KDMs, such as KDM6B that regulates the pro-inflammatory gene expression and CD4+ T helper (Th) cell lineage determination. This review will highlight the mechanisms by which KDMs and KMTs regulate the target gene expression and how epigenetic mechanisms may be applied to our understanding of oral inflammation.


Assuntos
Carcinogênese/genética , Ciclo Celular/genética , Periodontite Crônica/genética , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Processo Alveolar/crescimento & desenvolvimento , Metilação de DNA , Humanos , Dente/crescimento & desenvolvimento
2.
J Dent Res ; 98(10): 1150-1158, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31340691

RESUMO

Oral mucosa provides the first line of defense against a diverse array of environmental and microbial irritants by forming the barrier of epithelial cells interconnected by multiprotein tight junctions (TJ), adherens junctions, desmosomes, and gap junction complexes. Grainyhead-like 2 (GRHL2), an epithelial-specific transcription factor, may play a role in the formation of the mucosal epithelial barrier, as it regulates the expression of the junction proteins. The current study investigated the role of GRHL2 in the Porphyromonas gingivalis (Pg)-induced impairment of epithelial barrier functions. Exposure of human oral keratinocytes (HOK-16B and OKF6 cells) to Pg or Pg-derived lipopolysaccharides (Pg LPSs) led to rapid loss of endogenous GRHL2 and the junction proteins (e.g., zonula occludens, E-cadherin, claudins, and occludin). GRHL2 directly regulated the expression levels of the junction proteins and the epithelial permeability for small molecules (e.g., dextrans and Pg bacteria). To explore the functional role of GRHL2 in oral mucosal barrier, we used a Grhl2 conditional knockout (KO) mouse model, which allows for epithelial tissue-specific Grhl2 KO in an inducible manner. Grhl2 KO impaired the expression of the junction proteins at the junctional epithelium and increased the alveolar bone loss in the ligature-induced periodontitis model. Fluorescence in situ hybridization revealed increased epithelial penetration of oral bacteria in Grhl2 KO mice compared with the wild-type mice. Also, blood loadings of oral bacteria (e.g., Bacteroides, Bacillus, Firmicutes, ß-proteobacteria, and Spirochetes) were significantly elevated in Grhl2 KO mice compared to the wild-type littermates. These data indicate that Pg bacteria may enhance paracellular penetration through oral mucosa in part by targeting the expression of GRHL2 in the oral epithelial cells, which then impairs the epithelial barrier by inhibition of junction protein expression, resulting in increased alveolar tissue destruction and systemic bacteremia.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mucosa Bucal/microbiologia , Porphyromonas gingivalis/patogenicidade , Junções Íntimas , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Células Epiteliais , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA