Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(9): 4421-4428, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880265

RESUMO

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a rapidly growing technique for protein characterization in industry and academia, complementing the "static" picture provided by classical structural biology with information about the dynamic structural changes that accompany biological function. Conventional hydrogen deuterium exchange experiments, carried out on commercially available systems, typically collect 4-5 exchange timepoints on a timescale ranging from tens of seconds to hours using a workflow that can require 24 h or more of continuous data collection for triplicate measurements. A small number of groups have developed setups for millisecond timescale HDX, allowing for the characterization of dynamic shifts in weakly structured or disordered regions of proteins. This capability is particularly important given the central role that weakly ordered protein regions often play in protein function and pathogenesis. In this work, we introduce a new continuous flow injection setup for time-resolved HDX-MS (CFI-TRESI-HDX) that allows automated, continuous or discrete labeling time measurements from milliseconds to hours. The device is composed almost entirely of "off-the-shelf" LC components and can acquire an essentially unlimited number of timepoints with substantially reduced runtimes compared to conventional systems.


Assuntos
Medição da Troca de Deutério , Tetranitrato de Pentaeritritol , Espectrometria de Massa com Troca Hidrogênio-Deutério , Coleta de Dados , Hidrogênio
2.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494369

RESUMO

Neurodegeneration in Alzheimer's disease (AD) is defined by pathology featuring amyloid-ß (Aß) deposition in the brain. Aß monomers themselves are generally considered to be nontoxic, but misfold into ß-sheets and aggregate to form neurotoxic oligomers. One suggested strategy to treat AD is to prevent the formation of toxic oligomers. The SG inhibitors are a class of pseudopeptides designed and optimized using molecular dynamics (MD) simulations for affinity to Aß and experimentally validated for their ability to inhibit amyloid-amyloid binding using single molecule force spectroscopy (SMFS). In this work, we provide a review of our previous MD and SMFS studies of these inhibitors and present new cell viability studies that demonstrate their neuroprotective effects against Aß(1-42) oligomers using mouse hippocampal-derived HT22 cells. Two of the tested SG inhibitors, predicted to bind Aß in anti-parallel orientation, demonstrated neuroprotection against Aß(1-42). A third inhibitor, predicted to bind parallel to Aß, was not neuroprotective. Myristoylation of SG inhibitors, intended to enhance delivery across the blood-brain barrier (BBB), resulted in cytotoxicity. This is the first use of HT22 cells for the study of peptide aggregation inhibitors. Overall, this work will inform the future development of peptide aggregation inhibitors against Aß toxicity.


Assuntos
Amiloide/antagonistas & inibidores , Proteínas Amiloidogênicas/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Linhagem Celular Tumoral , Sobrevivência Celular , Descoberta de Drogas , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Conformação Molecular , Fármacos Neuroprotetores , Agregação Patológica de Proteínas/tratamento farmacológico , Ligação Proteica , Análise Espectral , Relação Estrutura-Atividade
3.
J Phys Chem A ; 123(22): 4658-4670, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31082235

RESUMO

A major hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-ß peptides in the brains of people afflicted by the disease. The exact pathway to this catastrophic event is unknown. In this work, a total of 9.5 µs molecular dynamics simulations have been performed to investigate the structure and dynamics of the smallest form of toxic Aß oligomers, i.e., the Aß dimers. This study suggests that specific hydrophobic regions are vital in the aggregation process. Different possible structures for Aß dimers are reported along with their relative binding affinity. These data may be used to design better Aß-aggregation inhibitors. The diversity of the dimer structures suggests several aggregation pathways.

4.
Molecules ; 23(9)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231520

RESUMO

A causative factor for neurotoxicity associated with Alzheimer's disease is the aggregation of the amyloid-ß (Aß) peptide into soluble oligomers. Two all d-amino acid pseudo-peptides, SGB1 and SGD1, were designed to stop the aggregation. Molecular dynamics (MD) simulations have been carried out to study the interaction of the pseudo-peptides with both Aß13⁻23 (the core recognition site of Aß) and full-length Aß1⁻42. Umbrella sampling MD calculations have been used to estimate the free energy of binding, ∆G, of these peptides to Aß13⁻23. The highest ∆Gbinding is found for SGB1. Each of the pseudo-peptides was also docked to Aß1⁻42 and subjected up to seven microseconds of all atom molecular dynamics simulations. The resulting structures lend insight into how the dynamics of Aß1⁻42 are altered by complexation with the pseudo-peptides and confirmed that SGB1 may be a better candidate for developing into a drug to prevent Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Peptídeos/química , Conformação Proteica , Multimerização Proteica
5.
ACS Chem Biol ; 15(1): 234-242, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31613081

RESUMO

Lcn2 is a host defense protein induced via the innate immune response to sequester iron-loaded bacterial siderophores. However, excess or prolonged elevation of Lcn2 levels can induce adverse cellular effects, including oxidative stress and inflammation. In this work, we use Hydrogen-Deuterium eXchange (HDX) and Isothermal Titration Calorimetry (ITC) to characterize the binding interaction between Lcn2 and siderophores enterobactin and 2,3-DHBA, in the presence and absence of iron. Our results indicate a rare "Type II" interaction in which binding of siderophores drives the protein conformational equilibrium toward an unfolded state. Linking our molecular model to cellular assays, we demonstrate that this "distorted binding mode" facilitates a deleterious cellular accumulation of reactive oxygen species that could represent the molecular origin of Lcn2 pathology. These results add important insights into mechanisms of Lcn2 action and have implications in Lcn2-mediated effects including inflammation.


Assuntos
Anti-Infecciosos/química , Proteínas de Bactérias/química , Deutério/química , Lipocalina-2/química , Sideróforos/química , Anti-Infecciosos/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Enterobactina/química , Humanos , Hidroxibenzoatos/química , Imunidade Inata/efeitos dos fármacos , Ferro/química , Cinética , Lipocalina-2/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Sideróforos/metabolismo , Coloração e Rotulagem , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA