Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593900

RESUMO

Deep neural networks provide the current best models of visual information processing in the primate brain. Drawing on work from computer vision, the most commonly used networks are pretrained on data from the ImageNet Large Scale Visual Recognition Challenge. This dataset comprises images from 1,000 categories, selected to provide a challenging testbed for automated visual object recognition systems. Moving beyond this common practice, we here introduce ecoset, a collection of >1.5 million images from 565 basic-level categories selected to better capture the distribution of objects relevant to humans. Ecoset categories were chosen to be both frequent in linguistic usage and concrete, thereby mirroring important physical objects in the world. We test the effects of training on this ecologically more valid dataset using multiple instances of two neural network architectures: AlexNet and vNet, a novel architecture designed to mimic the progressive increase in receptive field sizes along the human ventral stream. We show that training on ecoset leads to significant improvements in predicting representations in human higher-level visual cortex and perceptual judgments, surpassing the previous state of the art. Significant and highly consistent benefits are demonstrated for both architectures on two separate functional magnetic resonance imaging (fMRI) datasets and behavioral data, jointly covering responses to 1,292 visual stimuli from a wide variety of object categories. These results suggest that computational visual neuroscience may take better advantage of the deep learning framework by using image sets that reflect the human perceptual and cognitive experience. Ecoset and trained network models are openly available to the research community.


Assuntos
Aprendizado Profundo , Ecologia , Modelos Neurológicos , Redes Neurais de Computação , Reconhecimento Visual de Modelos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico , Humanos
2.
J Cogn Neurosci ; 33(10): 2044-2064, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34272948

RESUMO

Deep neural networks (DNNs) trained on object recognition provide the best current models of high-level visual cortex. What remains unclear is how strongly experimental choices, such as network architecture, training, and fitting to brain data, contribute to the observed similarities. Here, we compare a diverse set of nine DNN architectures on their ability to explain the representational geometry of 62 object images in human inferior temporal cortex (hIT), as measured with fMRI. We compare untrained networks to their task-trained counterparts and assess the effect of cross-validated fitting to hIT, by taking a weighted combination of the principal components of features within each layer and, subsequently, a weighted combination of layers. For each combination of training and fitting, we test all models for their correlation with the hIT representational dissimilarity matrix, using independent images and subjects. Trained models outperform untrained models (accounting for 57% more of the explainable variance), suggesting that structured visual features are important for explaining hIT. Model fitting further improves the alignment of DNN and hIT representations (by 124%), suggesting that the relative prevalence of different features in hIT does not readily emerge from the Imagenet object-recognition task used to train the networks. The same models can also explain the disparate representations in primary visual cortex (V1), where stronger weights are given to earlier layers. In each region, all architectures achieved equivalently high performance once trained and fitted. The models' shared properties-deep feedforward hierarchies of spatially restricted nonlinear filters-seem more important than their differences, when modeling human visual representations.


Assuntos
Redes Neurais de Computação , Córtex Visual , Humanos , Imageamento por Ressonância Magnética , Lobo Temporal/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Percepção Visual
3.
PLoS Comput Biol ; 16(10): e1008215, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006992

RESUMO

Deep feedforward neural network models of vision dominate in both computational neuroscience and engineering. The primate visual system, by contrast, contains abundant recurrent connections. Recurrent signal flow enables recycling of limited computational resources over time, and so might boost the performance of a physically finite brain or model. Here we show: (1) Recurrent convolutional neural network models outperform feedforward convolutional models matched in their number of parameters in large-scale visual recognition tasks on natural images. (2) Setting a confidence threshold, at which recurrent computations terminate and a decision is made, enables flexible trading of speed for accuracy. At a given confidence threshold, the model expends more time and energy on images that are harder to recognise, without requiring additional parameters for deeper computations. (3) The recurrent model's reaction time for an image predicts the human reaction time for the same image better than several parameter-matched and state-of-the-art feedforward models. (4) Across confidence thresholds, the recurrent model emulates the behaviour of feedforward control models in that it achieves the same accuracy at approximately the same computational cost (mean number of floating-point operations). However, the recurrent model can be run longer (higher confidence threshold) and then outperforms parameter-matched feedforward comparison models. These results suggest that recurrent connectivity, a hallmark of biological visual systems, may be essential for understanding the accuracy, flexibility, and dynamics of human visual recognition.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Tempo de Reação/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Adulto , Biologia Computacional , Feminino , Humanos , Masculino , Adulto Jovem
4.
Nat Commun ; 11(1): 5725, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184286

RESUMO

Deep neural networks (DNNs) excel at visual recognition tasks and are increasingly used as a modeling framework for neural computations in the primate brain. Just like individual brains, each DNN has a unique connectivity and representational profile. Here, we investigate individual differences among DNN instances that arise from varying only the random initialization of the network weights. Using tools typically employed in systems neuroscience, we show that this minimal change in initial conditions prior to training leads to substantial differences in intermediate and higher-level network representations despite similar network-level classification performance. We locate the origins of the effects in an under-constrained alignment of category exemplars, rather than misaligned category centroids. These results call into question the common practice of using single networks to derive insights into neural information processing and rather suggest that computational neuroscientists working with DNNs may need to base their inferences on groups of multiple network instances.


Assuntos
Neurociência Cognitiva/métodos , Individualidade , Redes Neurais de Computação , Animais , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA