RESUMO
A new artificial intelligence-based approach is proposed by developing a deep learning (DL) model for identifying the people who violate the face mask protocol in public places. To achieve this goal, a private dataset was created, including different face images with and without masks. The proposed model was trained to detect face masks from real-time surveillance videos. The proposed face mask detection (FMDNet) model achieved a promising detection of 99.0% in terms of accuracy for identifying violations (no face mask) in public places. The model presented a better detection capability compared to other recent DL models such as FSA-Net, MobileNet V2, and ResNet by 24.03%, 5.0%, and 24.10%, respectively. Meanwhile, the model is lightweight and had a confidence score of 99.0% in a resource-constrained environment. The model can perform the detection task in real-time environments at 41.72 frames per second (FPS). Thus, the developed model can be applicable and useful for governments to maintain the rules of the SOP protocol.
Assuntos
COVID-19 , Máscaras , Humanos , Inteligência Artificial , Pandemias , Equipamento de Proteção IndividualRESUMO
This study aimed to develop an automatic diagnostic scheme for bruxism, a sleep-related disorder characterized by teeth grinding and clenching. The aim was to improve on existing methods, which have been proven to be inefficient and challenging. We utilized a novel hybrid machine learning classifier, facilitated by the Weka tool, to diagnose bruxism from biological signals. The study processed and examined these biological signals by calculating the power spectral density. Data were categorized into normal or bruxism categories based on the EEG channel (C4-A1), and the sleeping phases were classified into wake (w) and rapid eye movement (REM) stages using the ECG channel (ECG1-ECG2). The classification resulted in a maximum specificity of 93% and an accuracy of 95% for the EEG-based diagnosis. The ECG-based classification yielded a supreme specificity of 87% and an accuracy of 96%. Furthermore, combining these phases using the EMG channel (EMG1-EMG2) achieved the highest specificity of 95% and accuracy of 98%. The ensemble Weka tool combined all three physiological signals EMG, ECG, and EEG, to classify the sleep stages and subjects. This integration increased the specificity and accuracy to 97% and 99%, respectively. This indicates that a more precise bruxism diagnosis can be obtained by including all three biological signals. The proposed method significantly improves bruxism diagnosis accuracy, potentially enhancing automatic home monitoring systems for this disorder. Future studies may expand this work by applying it to patients for practical use.
RESUMO
Lung-related ailments are prevalent all over the world which majorly includes asthma, chronic obstructive pulmonary disease (COPD), tuberculosis, pneumonia, fibrosis, etc. and now COVID-19 is added to this list. Infection of COVID-19 poses respirational complications with other indications like cough, high fever, and pneumonia. WHO had identified cancer in the lungs as a fatal cancer type amongst others and thus, the timely detection of such cancer is pivotal for an individual's health. Since the elementary convolutional neural networks have not performed fairly well in identifying atypical image types hence, we recommend a novel and completely automated framework with a deep learning approach for the recognition and classification of chronic pulmonary disorders (CPD) and COVID-pneumonia using Thoracic or Chest X-Ray (CXR) images. A novel three-step, completely automated, approach is presented that first extracts the region of interest from CXR images for preprocessing, and they are then used to detects infected lungs X-rays from the Normal ones. Thereafter, the infected lung images are further classified into COVID-pneumonia, pneumonia, and other chronic pulmonary disorders (OCPD), which might be utilized in the current scenario to help the radiologist in substantiating their diagnosis and in starting well in time treatment of these deadly lung diseases. And finally, highlight the regions in the CXR which are indicative of severe chronic pulmonary disorders like COVID-19 and pneumonia. A detailed investigation of various pivotal parameters based on several experimental outcomes are made here. This paper presents an approach that detects the Normal lung X-rays from infected ones and the infected lung images are further classified into COVID-pneumonia, pneumonia, and other chronic pulmonary disorders with an utmost accuracy of 96.8%. Several other collective performance measurements validate the superiority of the presented model. The proposed framework shows effective results in classifying lung images into Normal, COVID-pneumonia, pneumonia, and other chronic pulmonary disorders (OCPD). This framework can be effectively utilized in this current pandemic scenario to help the radiologist in substantiating their diagnosis and in starting well in time treatment of these deadly lung diseases.