Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Radiol Oncol ; 51(1): 101-112, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28265239

RESUMO

BACKGROUND: Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. MATERIALS AND METHODS: A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. RESULTS: The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. CONCLUSIONS: Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS).

2.
Radiol Oncol ; 50(2): 238-46, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27247558

RESUMO

AIM: The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. BACKGROUND: Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MATERIALS AND METHODS: MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. RESULTS: Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. CONCLUSIONS: Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.

3.
Australas Phys Eng Sci Med ; 35(2): 177-85, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22700179

RESUMO

The aim of this study was to quantify the dose enhancement by gadolinium and gold nanoparticles in brachytherapy. MCNPX Monte Carlo code was used to simulate four brachytherapy sources: (60)Co, (198)Au, (192)Ir, (169)Yb. To verify the accuracy of our simulations, the obtained values of dose rate constants and radial dose functions were compared with corresponding published values for these sources. To study dose enhancements, a spherical soft tissue phantom with 15 cm in radius was simulated. Gadolinium and gold nanoparticles at 10, 20 and 30 mg/ml concentrations were separately assumed in a 1 × 1 × 1 cm(3) volume simulating tumour. The simulated dose to the tumour with the impurity was compared to the dose without impurity, as a function of radial distance and concentration of the impurity, to determine the enhancement of dose due to the presence of the impurity. Dose enhancements in the tumour obtained in the presence of gadolinium and gold nanoparticles with concentration of 30 mg/ml, were found to be in the range of -0.5-106.1 and 0.4-153.1 % respectively. In addition, at higher radial distances from the source center, higher dose enhancements were observed. GdNPs can be used as a high atomic number material to enhance dose in tumour volume with dose enhancements up to 106.1 % when used in brachytherapy. Regardless considering the clinical limitations of the here-in presented model, for a similar source and concentration of nanoparticles, gold nanoparticles show higher dose enhancement than gadolinium nanoparticles and can have more clinical usefulness as dose enhancer material.


Assuntos
Braquiterapia/métodos , Gadolínio/química , Gadolínio/efeitos da radiação , Modelos Químicos , Modelos Estatísticos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Simulação por Computador , Relação Dose-Resposta à Radiação , Ouro , Teste de Materiais , Método de Monte Carlo , Doses de Radiação
4.
Phys Eng Sci Med ; 45(3): 747-755, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35796865

RESUMO

The aim of this study is to classify patients suspected from COVID-19 to five stages as normal, early, progressive, peak, and absorption stages using radiomics approach based on lung computed tomography images. Lung CT scans of 683 people were evaluated. A set of statistical texture features was extracted from each CT image. The people were classified using the random forest algorithm as an ensemble method based on the decision trees outputs to five stages of COVID-19 disease. Proposed method attains the highest result with an accuracy of 93.55% (96.25% in normal, 74.39% in early, 100% in progressive, 82.19% in peak, and 96% in absorption stage) compared to the other three common classifiers. Radiomics method can be used for the classification of the stage of COVID-19 disease with good accuracy to help decide the length of time required to hospitalize patients, determine the type of treatment process required for patients in each category, and reduce the cost of care and treatment for hospitalized individuals.


Assuntos
COVID-19 , Neoplasias Pulmonares , COVID-19/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Tórax , Tomografia Computadorizada por Raios X/métodos
5.
Dose Response ; 18(3): 1559325820962600, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088245

RESUMO

BACKGROUND AND PURPOSE: To assess the feasibility of a treatment planning system in localizing, contouring, and targeting lung lesions along with an evaluation of volume indices of lung involvement in patients with COVID-19 pneumonia. METHODS: We evaluated 10 patients with PCR-confirmed COVID-19 pneumonia. The CT images were imported into the ISOgray® treatment planning system to anatomically define and contour the volumes of the pulmonary lesions, the lungs, and other nearby organs. RESULTS: The ratio of lung lesion volume to lung volume in this study was 0.11 ± 0.13 (11.13%). The highest mean biosynthesis ratio of lung lesions was 0.36. The ratio of lesion volume in the left lung of patients with the highest volume of involvement, was 0.44, and the ratio of lesion volume in the right lung of these patients was 0.27 (approximately 1.5 times more in the left lung than the right lung). On average, CTDIvol and DLP for all patients studied in our study were 11.22 ± 2.47 mGy and 354.20 ± 65.11 mGy.cm. CONCLUSION: We reported the feasibility of using a treatment planning system in localizing COVID-19 pulmonary lesions and its validity in the volumetric assessment of infected lung regions.

6.
Australas Phys Eng Sci Med ; 39(1): 113-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581762

RESUMO

The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm(2) applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam's energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 µGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.


Assuntos
Restauração Dentária Permanente , Elétrons , Fótons , Dosagem Radioterapêutica , Dente/efeitos da radiação , Método de Monte Carlo , Imagens de Fantasmas
7.
Australas Phys Eng Sci Med ; 38(1): 83-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25544658

RESUMO

This study is an effort to propose a mathematical relation between the occupational exposure measured by a dosimeter worn on a lead apron in the chest region of a cardiologist and the dose area product (DAP) recorded by a meter attached to the X-ray tube. We aimed to determine factors by which DAP values attributed to patient exposure could be converted to the over-apron entrance surface air kerma incurred by cardiologists during an angiographic procedure. A Rando phantom representing a patient was exposed by an X-ray tube from 77 pre-defined directions. DAP value for each exposure angle was recorded. Cardiologist exposure was measured by a Radcal ionization chamber 10X5-180 positioned on a second phantom representing the physician. The exposure conversion factor was determined as the quotient of over apron exposure by DAP value. To verify the validity of this method, the over-apron exposure of a cardiologist was measured using the ionization chamber while performing coronary angiography procedures on 45 patients weighing on average 75 ± 5 kg. DAP values for the corresponding procedures were also obtained. Conversion factors obtained from phantom exposure were applied to the patient DAP values to calculate physician exposure. Mathematical analysis of our results leads us to conclude that a linear relationship exists between two sets of data: (a) cardiologist exposure measured directly by Radcal & DAP values recorded by the X-ray machine system (R (2) = 0.88), (b) specialist measured and estimated exposure derived from DAP values (R (2) = 0.91). The results demonstrate that cardiologist occupational exposure can be derived from patient data accurately.


Assuntos
Fluoroscopia/estatística & dados numéricos , Modelos Teóricos , Exposição Ocupacional/análise , Exposição à Radiação/análise , Proteção Radiológica , Angiografia Coronária , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA