Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Inorg Chem ; 63(6): 2899-2908, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127051

RESUMO

The energetic and geometric features enabling redox chemistry across the copper cupredoxin fold contain key components of electron transfer chains (ETC), which have been extended here by templating the cross-ß bilayer assembly of a synthetic nonapeptide, HHQALVFFA-NH2 (K16A), with copper ions. Similar to ETC cupredoxin plastocyanin, these assemblies contain copper sites with blue-shifted (λmax 573 nm) electronic transitions and strongly oxidizing reduction potentials. Electron spin echo envelope modulation and X-ray absorption spectroscopies define square planar Cu(II) sites containing a single His ligand. Restrained molecular dynamics of the cross-ß peptide bilayer architecture support metal ion coordination stabilizing the leaflet interface and indicate that the relatively high reduction potential is not simply the result of distorted coordination geometry (entasis). Cyclic voltammetry (CV) supports a charge-hopping mechanism across multiple copper centers placed 10-12 Å apart within the assembled peptide leaflet interface. This metal-templated scaffold accordingly captures the electron shuttle and cupredoxin functionality in a peptide membrane-localized electron transport chain.

2.
Chembiochem ; 22(7): 1292-1301, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33238068

RESUMO

Many bacteria, such as Pseudomonas aeruginosa, regulate phenotypic switching in a population density-dependent manner through a phenomenon known as quorum sensing (QS). For Gram-negative bacteria, QS relies on the synthesis, transmission, and perception of low-molecular-weight signal molecules that are predominantly N-acyl-l-homoserine lactones (AHLs). Efforts to disrupt AHL-mediated QS have largely focused on the development of synthetic AHL analogues (SAHLAs) that are structurally similar to native AHLs. However, like AHLs, these molecules tend to be hydrophobic and are poorly soluble under aqueous conditions. Water-soluble macrocycles, such as cyclodextrins (CDs), that encapsulate hydrophobic guests have long been used by both the agricultural and pharmaceutical industries to overcome the solubility issues associated with hydrophobic compounds of interest. Conveniently, CDs have also demonstrated anti-AHL-mediated QS effects. Here, using fluorescence spectroscopy, NMR spectrometry, and mass spectrometry, we evaluate the affinity of SAHLAs, as well as their hydrolysis products, for ß-CD inclusion. We also evaluated the ability of these complexes to inhibit wild-type P. aeruginosa virulence in a Caenorhabditis elegans host infection study, for the first time. Our efforts confirm the potential of ß-CDs for the improved delivery of SAHLAs at the host/microbial interface, expanding the utility of this approach as a strategy for probing and controlling QS.


Assuntos
Acil-Butirolactonas/química , Portadores de Fármacos/química , Percepção de Quorum , beta-Ciclodextrinas/química , Acil-Butirolactonas/síntese química , Acil-Butirolactonas/farmacologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Óvulo/efeitos dos fármacos , Óvulo/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Virulência
3.
Genes Immun ; 21(4): 260-262, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32606316

RESUMO

Cystic fibrosis (CF) is one of the most common autosomal recessive life-limiting conditions affecting Caucasians. The resulting defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) results in defective chloride and bicarbonate secretion, as well as dysregulation of epithelial sodium channels (ENaC). These changes bring about defective mucociliary clearance, reduced airway surface liquid and an exaggerated proinflammatory response driven, in part, by infection. In this short article we explore the overlap in the pathophysiology of CF and COVID-19 infection and discuss how understanding the interaction between both diseases may shed light on future treatments.


Assuntos
Infecções por Coronavirus/metabolismo , Fibrose Cística/metabolismo , Pneumonia Viral/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/metabolismo , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/complicações , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia
4.
J Am Chem Soc ; 142(1): 502-511, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31814397

RESUMO

Substituted triphenylamine (TPA) radical cations show great potential as oxidants and as spin-containing units in polymer magnets. Their properties can be further tuned by supramolecular assembly. Here, we examine how the properties of photogenerated radical cations, intrinsic to TPA macrocycles, are altered upon their self-assembly into one-dimensional columns. These macrocycles consist of two TPAs and two methylene ureas, which drive the assembly into porous organic materials. Advantageously, upon activation the crystals can undergo guest exchange in a single-crystal-to-single-crystal transformation generating a series of isoskeletal host-guest complexes whose properties can be directly compared. Photoinduced electron transfer, initiated using 365 nm light-emitting diodes, affords radicals at room temperature as observed by electron paramagnetic resonance (EPR) spectroscopy. The line shape of the EPR spectra and the quantity of radicals can be modulated by both polarity and heavy atom inclusion of the encapsulated guest. These photogenerated radicals are persistent, with half-lives between 1 and 7 d and display no degradation upon radical decay. Re-irradiation of the samples can restore the radical concentration back to a similar maximum concentration, a feature that is reproducible over several cycles. EPR simulations of a representative spectrum indicate two species, one containing two N hyperfine interactions and an additional broad signal with no resolvable hyperfine interaction. Intriguingly, TPA analogues without bromine substitution also exhibit similar quantities of photogenerated radicals, suggesting that supramolecular strategies can enable more flexibility in stable TPA radical structures. These studies will help guide the development of new photoactive materials.

5.
FASEB J ; 33(10): 11606-11614, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31242766

RESUMO

Phagocytosis of various targets, such as apoptotic cells or opsonized pathogens, by macrophages is coordinated by a complex signaling network initiated by distinct phagocytic receptors. Despite the different initial signaling pathways, each pathway ends up regulating the actin cytoskeletal network, phagosome formation and closure, and phagosome maturation leading to degradation of the engulfed particle. Herein, we describe a new phagocytic function for the nucleoside diphosphate kinase 1 (NDK-1), the nematode counterpart of the first identified metastasis inhibitor NM23-H1 (nonmetastatic clone number 23) nonmetastatic clone number 23 or nonmetastatic isoform 1 (NME1). We reveal by coimmunoprecipitation, Duolink proximity ligation assay, and mass spectrometry that NDK-1/NME1 works in a complex with DYN-1/Dynamin (Caenorhabditis elegans/human homolog proteins), which is essential for engulfment and phagosome maturation. Time-lapse microscopy shows that NDK-1 is expressed on phagosomal surfaces during cell corpse clearance in the same time window as DYN-1. Silencing of NM23-M1 in mouse bone marrow-derived macrophages resulted in decreased phagocytosis of apoptotic thymocytes. In human macrophages, NM23-H1 and Dynamin are corecruited at sites of phagosome formation in F-actin-rich cups. In addition, NM23-H1 was required for efficient phagocytosis. Together, our data demonstrate that NDK-1/NME1 is an evolutionarily conserved element of successful phagocytosis.-Farkas, Z., Petric, M., Liu, X., Herit, F., Rajnavölgyi, É., Szondy, Z., Budai, Z., Orbán, T. I., Sándor, S., Mehta, A., Bajtay, Z., Kovács, T., Jung, S. Y., Afaq Shakir, M., Qin, J., Zhou, Z., Niedergang, F., Boissan, M., Takács-Vellai, K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/dynamin.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Fagocitose/fisiologia , Actinas/metabolismo , Animais , Apoptose/fisiologia , Caenorhabditis elegans/metabolismo , Células Cultivadas , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Transdução de Sinais/fisiologia
6.
Angew Chem Int Ed Engl ; 59(1): 358-363, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617300

RESUMO

Proteinaceous plaques associated with neurodegenerative diseases contain many biopolymers including the polyanions glycosaminoglycans and nucleic acids. Polyanion-induced amyloid fibrillation has been implicated in disease etiology, but structural models for amyloid/nucleic acid co-assemblies remain limited. Here we constrain nucleic acid/peptide interactions with model peptides that exploit electrostatic complementarity and define a novel amyloid/nucleic acid co-assembly. The structure provides a model for nucleic acid/amyloid co-assembly as well as insight into the energetic determinants involved in templating amyloid assembly.


Assuntos
Amiloide/química , Ácidos Nucleicos Peptídicos/química , Humanos , Modelos Moleculares , Eletricidade Estática
7.
Mol Biol Rep ; 46(6): 6187-6195, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486977

RESUMO

Indian antelope or Blackbuck (Antilope cervicapra) is one of the widely distributed endemic species in India among wild bovids and a majority of preferred habitats are in human-dominated landscapes. Poaching threats and habitat degradation are major factors for the decline in Blackbuck population from its distribution range. Till date, there is no detailed study using molecular techniques in India on Blackbuck, except a few studies entailing phylogenetic scenario based on inadequate sampling and DNA sequences restricted over limited geographic areas. In view of this, the present study is aimed to screen the Blackbuck samples from a large part of its distribution range and to investigate the genetic diversity as well as to identify the forensically informative nucleotide sequences (FINS) for species identification. We relied on multi-genes approach using three genes of mtDNA genome viz. Cytochrome Oxidase I, Cytochrome b and 16S rRNA and identified the FINS in the Blackbuck population along with conspecific sequences divergence and genetic diversity indices. In all three genes, we observed 8 to 17 haplotypes with the intra-species sequence divergence of 0.004-0.016. Inter-species sequence divergence with the other closely related species of the Blackbuck was 0.0225-0.033. We report the presence of FINS across three genes from 12 to 18 and found more informative nucleotide sites using Cytochrome Oxidase I genes compared to Cytochrome b and 16S rRNA gene. We did not observe the presence of geographic-specific FINS amongst Blackbuck population that can be used to assign individuals to geographic origin. Besides, in the phylogenetic tree, samples from different locations did not cluster into geographic-specific clade and exhibited mixed homology for these sequences. We suggest exploring the feasibility of using nuclear markers for population assignment.


Assuntos
Antílopes/genética , Variação Genética , Genoma Mitocondrial , Genômica , Animais , Antílopes/classificação , Composição de Bases , Evolução Molecular , Genes Mitocondriais , Genética Populacional , Genômica/métodos , Índia , Filogenia
8.
Anim Biotechnol ; 30(3): 193-201, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30522381

RESUMO

Musk deer are of high conservation priority owing to poaching pressure because of its musk pod. Representation of musk deer status using genetics is poorly documented in India, and it is not confirmed as to how many species of musk deer are present. We characterize for the first time, the genetic diversity of musk deer from Uttarakhand using Cytochrome Oxidase sub-unit (COI) gene (486 bp) and compared with the data available for other species. Results revealed the presence of six haplotypes in the Uttarakhand population amongst 17 sequences. Of these, 12 sequences shared the single haplotype. The intra-species sequences divergence was 0.003-0.017, whereas divergence with other species of musk deer was 0.071-0.081. Bayesian phylogenetic tree revealed that samples from Uttarakhand formed a separate clade with respect to other species of musk deer, whereas three species distributed in China clustered in the same clade and showed low sequences divergence, i.e., 0.002-0.061. Because of different ecomorph reported, we suggest using the barcoding based approach for inter and intra-species distinction and delineating species boundaries across the range for effective conservation. Besides, systematic classification, DNA barcoding would also help in dealing wildlife offence cases for disposal of the legal report in court.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Ruminantes/genética , Animais , Teorema de Bayes , Espécies em Perigo de Extinção , Geografia , Haplótipos , Índia , Filogenia , Ruminantes/classificação
9.
Angew Chem Int Ed Engl ; 58(13): 4210-4216, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30672073

RESUMO

Solid-state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational-echo double-resonance (REDOR) NMR to interrogate 13 C-1 H distances is exploited along with DFT determinations of the 13 C tensor of carbonates (CO3 2- ). Nearby 1 H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3 ⋅Mg(OH)2 ⋅4 H2 O]. A match between the calculated structure and solid-state NMR was found by testing multiple semi-local and dispersion-corrected DFT functionals and applying them to optimize atom positions, starting from X-ray diffraction (XRD)-determined atomic coordinates. This was validated by comparing calculated to experimental 13 C{1 H} REDOR and 13 C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid-state NMR, XRD, and DFT can improve structure refinement for hydrated materials.

10.
Lab Invest ; 98(3): 272-282, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29251738

RESUMO

NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Calmodulina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Domínios Proteicos , Isoformas de Proteínas
11.
Lab Invest ; 98(2): 182-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28920944

RESUMO

Abnormal regulation of cell migration and altered rearrangement of the cytoskeleton are fundamental properties of metastatic cells. The first identified metastasis suppressor NM23-H1, which displays nucleoside-diphosphate kinase (NDPK) activity is involved in these processes. NM23-H1 inhibits the migratory and invasive potential of some cancer cells. Correspondingly, numerous invasive cancer cell lines (eg, breast, colon, oral, hepatocellular carcinoma, and melanoma) display low endogenous NM23 levels. In this review, we summarize mechanisms, which are linked to the anti-metastatic activity of NM23. In human cancer cell lines NM23-H1 was shown to regulate cytoskeleton dynamics through inactivation of Rho/Rac-type GTPases. The Drosophila melanogaster NM23 homolog abnormal wing disc (AWD) controls tracheal and border cell migration. The molecular function of AWD is well characterized in both processes as a GTP supplier of Shi/Dynamin whereby AWD regulates the level of chemotactic receptors on the surface of migrating cells through receptor internalization, by its endocytic function. Our group studied the role of the sole group I NDPK, NDK-1 in distal tip cell (DTC) migration in Caenorhabditis elegans. In the absence of NDK-1 the migration of DTCs is incomplete. A half dosage of NDPK as present in ndk-1 (+/-) heterozygotes results in extra turns and overshoots of migrating gonad arms. Conversely, an elevated NDPK level also leads to incomplete gonadal migration owing to a premature stop of DTCs in the third phase of migration, where NDK-1 acts. We propose that NDK-1 exerts a dosage-dependent effect on the migration of DTCs. Our data derived from DTC migration in C. elegans is consistent with data on AWD's function in Drosophila. The combined data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. The dosage of NDPKs may be a coupling factor in cell migration by modulating the efficiency of receptor recycling.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Movimento Celular/genética , Mutação , Nucleosídeo NM23 Difosfato Quinases/genética , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/metabolismo , Heterozigoto , Humanos , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Transdução de Sinais/genética
12.
J Am Chem Soc ; 139(47): 17007-17010, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29111722

RESUMO

Defining pathways for amyloid assembly could impact therapeutic strategies for as many as 50 disease states. Here we show that amyloid assembly is subject to different forces regulating nucleation and propagation steps and provide evidence that the more global ß-sheet/ß-sheet facial complementarity is a critical determinant for amyloid nucleation and structural selection.


Assuntos
Amiloide/química , Amiloide/síntese química , Proteínas Amiloidogênicas/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos , Estrutura Secundária de Proteína
13.
Environ Sci Technol ; 51(11): 6553-6559, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28460168

RESUMO

Multiple chemisorption products are found from the interaction of CO2 with the solid-amine sorbent, 3-aminopropyl silane (APS), bound to mesoporous silica (SBA15) using solid-state NMR and FTIR spectroscopy. We employed a combination of both 15N{13C} rotational-echo double-resonance (REDOR) NMR and 13C{15N} REDOR to determine the chemical identity of these products. 15N{13C} REDOR measurements are consistent with a single 13C-15N pair and distance of 1.45 Å. In contrast, both 13C{15N} REDOR and 13C CPMAS are consistent with multiple 13C products. 13C CPMAS shows two neighboring resonances, whose chemical shifts are consistent with carbamate (at 165 ppm) and carbamic acid. The 13C{15N} REDOR experiments resonant at 165 ppm show an incomplete buildup of the REDOR data to ∼90% of the expected maximum. We conclude this 10% missing intensity corresponds to a 13C NMR species that resonates at the identical chemical shift but that is not in dipolar contact with 15N. These data are consistent with the presence of bicarbonate, HCO3-, since it is commonly observed at ∼165 ppm and lacks 15N for dipolar coupling.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
14.
Philos Trans A Math Phys Eng Sci ; 375(2109)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133453

RESUMO

The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond.This article is part of the themed issue 'Reconceptualizing the origins of life'.


Assuntos
Biologia Computacional , Peptídeos/química , Peptídeos/metabolismo , RNA/química , RNA/metabolismo , Modelos Moleculares , Conformação Molecular , Origem da Vida
15.
J Am Chem Soc ; 138(10): 3579-86, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26942690

RESUMO

Energetic insights emerging from the structural characterization of peptide cross-ß assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel ß-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-ß assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.


Assuntos
Proteínas de Membrana/química , Nanotubos de Peptídeos/química , Peptídeos/química , Proteínas de Membrana/síntese química , Peptídeos/síntese química , Domínios Proteicos
16.
Development ; 140(16): 3486-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23900546

RESUMO

The group I members of the Nm23 (non-metastatic) gene family encode nucleoside diphosphate kinases (NDPKs) that have been implicated in the regulation of cell migration, proliferation and differentiation. Despite their developmental and medical significance, the molecular functions of these NDPKs remain ill defined. To minimize confounding effects of functional compensation between closely related Nm23 family members, we studied ndk-1, the sole Caenorhabditis elegans ortholog of group I NDPKs, and focused on its role in Ras/mitogen-activated protein kinase (MAPK)-mediated signaling events during development. ndk-1 inactivation leads to a protruding vulva phenotype and affects vulval cell fate specification through the Ras/MAPK cascade. ndk-1 mutant worms show severe reduction of activated, diphosphorylated MAPK in somatic tissues, indicative of compromised Ras/MAPK signaling. A genetic epistasis analysis using the vulval induction system revealed that NDK-1 acts downstream of LIN-45/Raf, but upstream of MPK-1/MAPK, at the level of the kinase suppressors of ras (KSR-1/2). KSR proteins act as scaffolds facilitating Ras signaling events by tethering signaling components, and we suggest that NDK-1 modulates KSR activity through direct physical interaction. Our study reveals that C. elegans NDK-1/Nm23 influences differentiation by enhancing the level of Ras/MAPK signaling. These results might help to better understand how dysregulated Nm23 in humans contributes to tumorigenesis.


Assuntos
Caenorhabditis elegans/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Genes ras , Sistema de Sinalização das MAP Quinases , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Desenvolvimento Embrionário , Ativação Enzimática , Epistasia Genética , Feminino , Inativação Gênica , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Nucleosídeo NM23 Difosfato Quinases/genética , Penetrância , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Vulva/enzimologia , Vulva/crescimento & desenvolvimento , Vulva/patologia , Quinases raf/genética , Quinases raf/metabolismo
17.
Cell Mol Life Sci ; 72(8): 1447-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25537302

RESUMO

In textbooks of biochemistry, nucleoside diphosphate conversion to a triphosphate by nucleoside diphosphate 'kinases' (NDPKs, also named NME or NM23 proteins) merits a few lines of text. Yet this essential metabolic function, mediated by a multimeric phosphotransferase protein, has effects that lie beyond a simple housekeeping role. NDPKs attracted more attention when NM23-H1 was identified as the first metastasis suppressor gene. In this review, we examine these NDPK enzymes from a developmental perspective because of the tractable phenotypes found in simple animal models that point to common themes. The data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. NDPKs regulate different forms of membrane enclosure that engulf dying cells during development. We suggest that NDPK enzymes have been essential for the regulated uptake of objects such as bacteria or micronutrients, and this evolutionarily conserved endocytic function contributes to their activity towards the regulation of metastasis.


Assuntos
Crescimento e Desenvolvimento , Núcleosídeo-Difosfato Quinase/metabolismo , Animais , Modelos Animais , Receptores de Superfície Celular/metabolismo , Receptores Notch/metabolismo , Retina/enzimologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Transdução de Sinais , Transmissão Sináptica , Asas de Animais/enzimologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
18.
Biochem Biophys Res Commun ; 466(1): 28-32, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26301631

RESUMO

CXCR4 is a GPCR involved in leukocyte trafficking. Small molecule antagonists of the receptor may treat inflammatory disease, cancer and HIV. Here we probe the binding of a tetrahydroisoquinoline-based antagonist (TIQ-10) to CXCR4 using saturation transfer double-difference (STDD) NMR. STDD spectra were acquired using extracts from Chinese Hamster Ovary cells expressing membrane-embedded CXCR4. The experiments demonstrate competitive binding between TIQ-10 and established antagonists and provide the TIQ-10 - CXCR4 binding epitope. Molecular modeling of TIQ-10 into the binding pocket provides a pose consistent with STDD-derived interactions. This study paves the way for future investigations of GPCR-ligand interactions in a biological milieu for use in chemical biology, biochemistry, structural biology, and rational drug design.


Assuntos
Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Receptores CXCR4/química
19.
Environ Sci Technol ; 49(22): 13684-91, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26477882

RESUMO

Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates.


Assuntos
Dióxido de Carbono/química , Espectroscopia de Ressonância Magnética/métodos , Polímeros/química , Adsorção , Aminas/química , Carbamatos/química , Isótopos de Carbono , Dióxido de Silício , Água/química
20.
Biochemistry ; 53(26): 4225-7, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24955650

RESUMO

Living cells contain a range of densely phosphorylated surfaces, including phospholipid membranes, ribonucleoproteins, and nucleic acid polymers. Hyperphosphorylated surfaces also accumulate in neurodegenerative diseases as neurofibrillar tangles. We have synthesized and structurally characterized a precisely patterned phosphotyrosine surface and establish this assembly as a surrogate of the neuronal tangles by demonstrating its high-affinity binding to histone H1. This association with nucleic acid binding proteins underscores the role such hyperphosphorylated surfaces may play in disease and opens functional exploration into protein-phosphorylated surface interactions in a wide range of other complex assemblies.


Assuntos
Histonas/química , Nanotubos de Peptídeos/química , Fosfotirosina/química , Animais , Humanos , Nanotubos de Peptídeos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA