Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466117

RESUMO

Speech disorders are associated with different degrees of functional and structural abnormalities. However, the abnormalities associated with specific disorders, and the common abnormalities shown by all disorders, remain unclear. Herein, a meta-analysis was conducted to integrate the results of 70 studies that compared 1843 speech disorder patients (dysarthria, dysphonia, stuttering, and aphasia) to 1950 healthy controls in terms of brain activity, functional connectivity, gray matter, and white matter fractional anisotropy. The analysis revealed that compared to controls, the dysarthria group showed higher activity in the left superior temporal gyrus and lower activity in the left postcentral gyrus. The dysphonia group had higher activity in the right precentral and postcentral gyrus. The stuttering group had higher activity in the right inferior frontal gyrus and lower activity in the left inferior frontal gyrus. The aphasia group showed lower activity in the bilateral anterior cingulate gyrus and left superior frontal gyrus. Across the four disorders, there were concurrent lower activity, gray matter, and fractional anisotropy in motor and auditory cortices, and stronger connectivity between the default mode network and frontoparietal network. These findings enhance our understanding of the neural basis of speech disorders, potentially aiding clinical diagnosis and intervention.


Assuntos
Afasia , Córtex Auditivo , Disfonia , Gagueira , Humanos , Disartria , Funções Verossimilhança , Distúrbios da Fala
2.
Psychophysiology ; : e14703, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367529

RESUMO

The left ventral occipitotemporal cortex (lvOT) has been consistently identified as a crucial structure in word reading, and its function varies across subregions. Nevertheless, the specific function of the lvOT and its subregions remains controversial because the obvious grapheme-to-phoneme correspondence rules of alphabetic languages make it difficult to disentangle the contributions of orthography and phonology to neural activations. To explore information processing in lvOT subregions, the present study manipulated the orthography and phonology in a factorial design and used the fMRI rapid adaptation paradigm. The results revealed a posterior-to-anterior functional gradient in lvOT in Chinese word reading and specified that the functional transition from sublexical to lexical processing occurred in the middle subregion close to the classic VWFA. More importantly, we found that the middle and posterior subregions of lvOT are responsible for processing both orthographic and phonological information during Chinese word reading. These results elaborated the function of the lvOT in Chinese word reading.

3.
Hum Brain Mapp ; 44(5): 2085-2098, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579666

RESUMO

Previous studies have investigated factors related to the degree of cross-language overlap in brain activations in bilinguals/multilinguals. However, it is still unclear whether and how the depth of semantic processing (a critical task-related factor) affects the neural pattern similarity between native and second languages. To address this question, 26 Chinese-English bilinguals were scanned with fMRI while performing a word naming task (i.e., a task with shallow semantic processing) and a semantic judgment task (i.e., a task with deep semantic processing) in both native and second languages. Based on three sets of representational similarity analysis (whole brain, ROI-based, and within-language vs. cross-language semantic representation), we found that select regions in the reading brain network showed higher cross-language pattern similarity and higher cross-language semantic representations during deep semantic processing than during shallow semantic processing. These results suggest that compared to shallow semantic processing, deep semantic processing may lead to greater language-independent processing (i.e., cross-language semantic representation) and cross-language pattern similarity, and provide direct quantitative neuroimaging evidence for cognitive models of bilingual lexical memory.


Assuntos
Multilinguismo , Semântica , Humanos , Encéfalo/diagnóstico por imagem , Idioma , Imageamento por Ressonância Magnética
4.
Hum Brain Mapp ; 43(13): 4013-4029, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35545935

RESUMO

Previous studies have revealed that phonological processing of Chinese characters elicited activation in the left prefrontal cortex, bilateral parietal cortex, and occipitotemporal regions. However, it is controversial what role the left middle frontal gyrus plays in Chinese character reading, and whether the core regions (e.g., the left superior temporal gyrus and supramarginal gyrus) for phonological processing of alphabetic languages are also involved in Chinese character reading. To address these questions, the present study used both univariate and multivariate analysis (i.e., representational similarity analysis, RSA) to explore neural representations of phonological information during Chinese character reading. Participants were scanned while performing a reading aloud task. Univariate activation analysis revealed a widely distributed network for word reading, including the bilateral inferior frontal gyrus, middle frontal gyrus, lateral temporal cortex, and occipitotemporal cortex. More importantly, RSA showed that the left prefrontal (i.e., the left middle frontal gyrus and left inferior frontal gyrus) and bilateral occipitotemporal areas (i.e., the left inferior and middle temporal gyrus and bilateral fusiform gyrus) represented phonological information of Chinese characters. These results confirmed the importance of the left middle frontal gyrus and regions in ventral pathway in representing phonological information of Chinese characters.


Assuntos
Idioma , Leitura , Mapeamento Encefálico , China , Humanos , Imageamento por Ressonância Magnética/métodos
5.
Cogn Emot ; 36(2): 240-253, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34775905

RESUMO

The adaptation aftereffect plays a critical role in human development and survival. Existing studies have found that, compared with general individuals, individuals with learning disability, autism and dyslexia show a smaller amount of non-affective-based cognitive adaptation aftereffect. Nevertheless, it is unclear whether individuals with depression or depression tendency show similar phenomenon in the adaptation aftereffect, and whether such depression tendency occurs in the non-affective-based cognitive or emotional adaptation aftereffect. To address this question, the present study conducted two experiments. Experiments 1A and 1B used the emotional facial expression adaptation paradigm to examine whether Chinese participants showed the emotional adaptation aftereffect and whether the emotional adaptation aftereffect was influenced by physical features of faces, respectively. Experiment 2 recruited two groups of participants, with high and low depression, respectively, to examine whether they showed differences in the emotional or cognitive adaptation aftereffect. Results showed that Chinese participants showed the typical emotional adaptation aftereffect, which was not influenced by physical features of faces. More importantly, compared to the low-depression group, the high-depression group showed a smaller emotional adaptation aftereffect, but the two groups showed a similar cognitive adaptation aftereffect. These results suggest that level of depressive symptoms is associated with the emotional adaptation aftereffect.


Assuntos
Pós-Efeito de Figura , Depressão , Ajustamento Emocional , Emoções , Expressão Facial , Humanos
6.
Hum Brain Mapp ; 42(4): 893-907, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33112483

RESUMO

How native and non-native languages are represented in the brain is one of the most important questions in neurolinguistics. Much research has found that the similarity in neural activity of native and non-native languages are influenced by factors such as age of acquisition, language proficiency, and language exposure in the non-native language. Nevertheless, it is still unclear how the similarity between native and non-native languages in orthographic transparency, a key factor that affects the cognitive and neural mechanisms of phonological access, modulates the cross-language similarity in neural activation and which brain regions show the modulatory effects of language distance in orthographic transparency. To address these questions, the present study used representational similarity analysis (RSA) to precisely estimate the neural pattern similarity between native language and two non-native languages in Uyghur-Chinese-English trilinguals, whose third language (i.e., English) was more similar to the native language (i.e., Uyghur) in orthography than to their second language (i.e., Chinese). Behavioral results revealed that subjects responded faster to words in the non-native language with more similar orthography to their native language in the word naming task. More importantly, RSA revealed greater neural pattern similarity between Uyghur and English than between Uyghur and Chinese in select brain areas for phonological processing, especially in the left hemisphere. Further analysis confirmed that those brain regions represented phonological information. These results provide direct neuroimaging evidence for the modulatory effect of language distance in orthographic transparency on cross-language pattern similarity between native and non-native languages during word reading.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Multilinguismo , Rede Nervosa/fisiologia , Psicolinguística , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Reconhecimento Visual de Modelos , Leitura , Adulto Jovem
7.
Brain Cogn ; 148: 105690, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33494036

RESUMO

The left fusiform cortex has been identified as a crucial structure in visual word learning and memory. Nevertheless, the specific roles of the fusiform subregions in word memory and their consistency across different writings have not been elaborated. To address these questions, the present study performed two experiments, in which study-test paradigm was used. Participants' brain activity was measured with fMRI while memorizing novel logographic words in Experiment 1 and novel alphabetic words in Experiment 2. A post-scan recognition memory test was then administered to acquire the memory performance. Results showed that, neural responses in the left anterior and middle fusiform subregions during encoding were positively correlated with recognition memory of novel words. Moreover, the positive brain-behavior correlations in the left anterior and middle fusiform cortex were evident for both logographic and alphabetic writings. The present findings clarify the relationship between the left fusiform subregions and novel word memory.


Assuntos
Memória , Reconhecimento Psicológico , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
8.
Hum Brain Mapp ; 40(1): 98-109, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136328

RESUMO

Previous neuroimaging studies have suggested similar neural activations for word reading in native and second languages. However, such similarities were qualitatively determined (i.e., overlapping activation based on traditional univariate activation analysis). In this study, using representational similarity analysis and an artificial language training paradigm, we quantitatively computed cross-language neural pattern similarity to examine the modulatory effect of proficiency in the new language. Twenty-four native Chinese speakers were trained to learn 30 words in a logographic artificial language for 12 days and scanned while performing a semantic decision task after 4-day training and after 12-day training. Results showed that higher proficiency in the new language was associated with higher cross-language pattern similarity in select regions of the reading network.


Assuntos
Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Multilinguismo , Rede Nervosa/fisiologia , Psicolinguística , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Tomada de Decisões/fisiologia , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Reconhecimento Visual de Modelos/fisiologia , Leitura , Adulto Jovem
9.
Neuroimage ; 110: 3-10, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25598049

RESUMO

Previous studies have suggested differential engagement of the bilateral fusiform gyrus in the processing of Chinese and English. The present study tested the possibility that long-term experience with Chinese language affects the fusiform laterality of English reading by comparing three samples: Chinese speakers, English speakers with Chinese experience, and English speakers without Chinese experience. We found that, when reading words in their respective native language, Chinese and English speakers without Chinese experience differed in functional laterality of the posterior fusiform region (right laterality for Chinese speakers, but left laterality for English speakers). More importantly, compared with English speakers without Chinese experience, English speakers with Chinese experience showed more recruitment of the right posterior fusiform cortex for English words and pseudowords, which is similar to how Chinese speakers processed Chinese. These results suggest that long-term experience with Chinese shapes the fusiform laterality of English reading and have important implications for our understanding of the cross-language influences in terms of neural organization and of the functions of different fusiform subregions in reading.


Assuntos
Idioma , Multilinguismo , Leitura , Povo Asiático , Córtex Cerebral/fisiologia , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
10.
Neuroimage ; 114: 38-48, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25858447

RESUMO

Previous studies have suggested differential engagement of addressed and assembled phonologies in reading Chinese and alphabetic languages (e.g., English) and the modulatory role of native language in learning to read a second language. However, it is not clear whether native language experience shapes the neural mechanisms of addressed and assembled phonologies. To address this question, we trained native Chinese and native English speakers to read the same artificial language (based on Korean Hangul) either through addressed (i.e., whole-word mapping) or assembled (i.e., grapheme-to-phoneme mapping) phonology. We found that, for both native Chinese and native English speakers, addressed phonology relied on the regions in the ventral pathway, whereas assembled phonology depended on the regions in the dorsal pathway. More importantly, we found that the neural mechanisms of addressed and assembled phonologies were shaped by native language experience. Specifically, one key region for addressed phonology (i.e., the left middle temporal gyrus) showed greater activation for addressed phonology in native Chinese speakers, while one key region for assembled phonology (i.e., the left supramarginal gyrus) showed more activation for assembled phonology in native English speakers. These results provide direct neuroimaging evidence for the effect of native language experience on the neural mechanisms of phonological access in a new language and support the assimilation-accommodation hypothesis.


Assuntos
Encéfalo/fisiologia , Comparação Transcultural , Aprendizagem/fisiologia , Fonética , Leitura , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Multilinguismo , Adulto Jovem
11.
J Neurolinguistics ; 36: 35-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27695193

RESUMO

In the present study, we explored how Age of Acquisition (AoA) of L2 affected brain structures in bilingual individuals. Thirty-six native English speakers who were bilingual were scanned with high resolution MRI. After MRI signal intensity inhomogeneity correction, we applied both voxel-based morphometry (VBM) and surface-based morphometry (SBM) approaches to the data. VBM analysis was performed using FSL's standard VBM processing pipeline. For the SBM analysis, we utilized a semi-automated sulci delineation procedure, registered the brains to an atlas, and extracted measures of twenty four pre-selected regions of interest. We addressed three questions: (1) Which areas are more susceptible to differences in AoA? (2) How do AoA, proficiency and current level of exposure work together in predicting structural differences in the brain? And (3) What is the direction of the effect of AoA on regional volumetric and surface measures? Both VBM and SBM results suggested that earlier second language exposure was associated with larger volumes in the right parietal cortex. Consistently, SBM showed that the cortical area of the right superior parietal lobule increased as AoA decreased. In contrast, in the right pars orbitalis of the inferior frontal gyrus, AoA, proficiency, and current level of exposure are equally important in accounting for the structural differences. We interpret our results in terms of current theory and research on the effects of L2 learning on brain structures and functions.

12.
Neuroimage ; 84: 546-53, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24055555

RESUMO

An intriguing discovery in recent years is that resting-state functional connectivity (RSFC) is associated with cognitive performance. The current study investigated whether RSFC within the reading network was correlated with Chinese adults' reading abilities in their native language (L1, Chinese) and second language (L2, English). Results showed that RSFC within the reading network was positively correlated to reading abilities in L1 and L2, and RSFC between reading areas and the default network was negatively correlated to reading abilities in L1 and L2. Further conjunction and contrast analyses revealed that L1 and L2 shared similar RSFC correlates including connectivities between the areas for visual analysis (e.g., bilateral posterior fusiform gyrus, lateral occipital cortices, and right superior parietal lobules) and those for phonological processing (e.g., bilateral precentral gyri and postcentral gyrus, Wernicke's area). These results indicate that RSFC is a potential neural marker for reading abilities in both L1 and L2, with important theoretical implications for reading in L1 and L2.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Compreensão/fisiologia , Imageamento por Ressonância Magnética/métodos , Multilinguismo , Rede Nervosa/fisiologia , Leitura , Adolescente , China , Inglaterra , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Descanso/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
13.
Neuroimage ; 98: 435-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24814214

RESUMO

In the past decade, several studies have investigated language-general and -specific brain regions for reading. However, very limited research has examined the white matter that connects these cortical regions. By using diffusion tensor imaging (DTI), the current study investigated the common and divergent relationship between white matter integrity indexed by fractional anisotropy (FA) and native language reading abilities in 89 Chinese and 93 English speakers. Conjunction analysis revealed that for both groups, reading ability was associated with the FA of seven white matter fiber bundles in two main anatomical locations in the left hemisphere: the dorsal corona radiate/corpus callosum/superior longitudinal fasciculus which might be for phonological access, and the ventral uncinate fasciculus/external capsule/inferior fronto-occipital fasciculus which might be for semantic processing. Contrast analysis showed that the FA of the left temporal part of superior longitudinal fasciculus contributed more to reading in English than in Chinese, which is consistent with the notion that this tract is involved in grapheme-to-phoneme conversion for alphabetic language reading. These results are the first evidence of language-general and -specific white matter microstructural bases for reading.


Assuntos
Encéfalo/anatomia & histologia , Leitura , Substância Branca/anatomia & histologia , Adolescente , Adulto , Anisotropia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Adulto Jovem
14.
Brain Lang ; 258: 105485, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388908

RESUMO

Previous studies suggest that semantic concepts are characterized by high-dimensional neural representations and that language proficiency affects semantic processing. However, it is not clear whether language proficiency modulates the dimensional representations of semantic concepts at the neural level. To address this question, the present study adopted principal component analysis (PCA) and representational similarity analysis (RSA) to examine the differences in representational dimensionalities (RDs) and in semantic representations between words in highly proficient (Chinese) and less proficient (English) language. PCA results revealed that language proficiency increased the dimensions of lexical representations in the left inferior frontal gyrus, temporal pole, inferior temporal gyrus, supramarginal gyrus, angular gyrus, and fusiform gyrus. RSA results further showed that these regions represented semantic information and that higher semantic representations were observed in highly proficient language relative to less proficient language. These results suggest that language proficiency is associated with the neural representational dimensionality of semantic concepts.

15.
Brain Imaging Behav ; 18(3): 539-554, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38261218

RESUMO

Semantic processing, a core of language comprehension, involves the activation of brain regions dispersed extensively across the frontal, temporal, and parietal cortices that compose the semantic network. To comprehend the functional structure of this semantic network and how it prepares for semantic processing, we investigated its intrinsic functional connectivity (FC) and the relation between this pattern and semantic processing ability in a large sample from the Human Connectome Project (HCP) dataset. We first defined a well-studied brain network for semantic processing, and then we characterized the within-network connectivity (WNC) and the between-network connectivity (BNC) within this network using a voxel-based global brain connectivity (GBC) method based on resting-state functional magnetic resonance imaging (fMRI). The results showed that 97.73% of the voxels in the semantic network displayed considerably greater WNC than BNC, demonstrating that the semantic network is a fairly encapsulated network. Moreover, multiple connector hubs in the semantic network were identified after applying the criterion of WNC > 1 SD above the mean WNC of the semantic network. More importantly, three of these connector hubs (i.e., the left anterior temporal lobe, angular gyrus, and orbital part of the inferior frontal gyrus) were reliably associated with semantic processing ability. Our findings suggest that the three identified regions use WNC as the central mechanism for supporting semantic processing and that task-independent spontaneous connectivity in the semantic network is essential for semantic processing.


Assuntos
Encéfalo , Compreensão , Conectoma , Imageamento por Ressonância Magnética , Rede Nervosa , Vias Neurais , Semântica , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Masculino , Compreensão/fisiologia , Vias Neurais/fisiologia , Feminino , Adulto Jovem , Mapeamento Encefálico/métodos
16.
Brain Sci ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38539645

RESUMO

Adaptation aftereffects-in which prolonged prior experience (adaptation) can bias the subsequent judgment of ambiguous stimuli-are a ubiquitous phenomenon. Numerous studies have found behaviorally stable adaptation aftereffects in a variety of areas. However, it is unclear which brain regions are responsible for this function, particularly in the case of high-level emotional adaptation aftereffects. To address this question, the present study used fMRI technology to investigate the neural mechanism of emotional adaptation aftereffects. Consistent with previous studies, we observed typical emotional adaptation effects in behavior. Specifically, for the same morphed facial images, participants perceived increased sadness after adapting to a happy facial image and increased happiness after adapting to a sad facial image. More crucially, by contrasting neural responses to ambiguous morphed facial images (i.e., facial images of intermediate morph levels) following adaptation to happy and sad expressions, we demonstrated a neural mechanism of emotional aftereffects supported by the left amygdala/insula, right angular gyrus, and right inferior frontal gyrus. These results suggest that the aftereffects of emotional adaptation are supported not only by brain regions subserving emotional processing but also by those subserving cognitive control.

17.
Neuroscience ; 544: 117-127, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38447688

RESUMO

Previous research has mapped out the brain regions that respond to semantic stimuli presented visually and auditorily, but there is debate about whether semantic representation is modality-specific (only written or only spoken) or modality-invariant (both written and spoken). The mechanism of semantic representation underlying native (L1) and second language (L2) comprehension in different modalities as well as how this mechanism is influenced by L2 proficiency, remains unclear. We used functional magnetic resonance imaging (fMRI) data from the OpenNEURO database to calculate neural pattern similarity across native and second languages (Spanish and English) for different input modalities (written and spoken) and learning sessions (before and after training). The correlations between behavioral performance and cross-language pattern similarity for L1 and L2 were also calculated. Spanish-English bilingual adolescents (N = 24; ages 16-17; 19 girls) participated in a 3-month English immersion after-school program. As L2 proficiency increased, greater cross-language pattern similarity between L1 and L2 spoken words was observed in the left pars triangularis. Cross-language pattern similarity between L1 and L2 written words was observed in the right anterior temporal lobe. Brain-behavior correlations indicated that increased cross-language pattern similarity between L1 and L2 written words in the right anterior temporal lobe was associated with L2 written word comprehension. This study identified an effective neurofunctional predictor related to L2 written word comprehension.


Assuntos
Multilinguismo , Feminino , Adolescente , Humanos , Idioma , Semântica , Encéfalo/diagnóstico por imagem , Língua
18.
Neuroimage ; 65: 250-6, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23022094

RESUMO

Previous functional neuroimaging studies have shown that the left mid-fusiform cortex plays a critical role in reading. However, there is very limited research relating this region's anatomical structure to reading performance either in native or second language. Using structural MRI and three reading tasks (Chinese characters, English words, and alphabetic pseudowords) and a non-reading task (visual-auditory learning), this study investigated the contributions of the left mid-fusiform cortical thickness to reading in a large sample of 226 Chinese subjects. Results showed that the cortical thickness in the left mid-fusiform gyrus was positively correlated with performance on all three reading tasks but not with the performance on the non-reading task. Our findings provide structural evidence for the left mid-fusiform cortex as the "gateway" region for reading Chinese and English. The absence of the association between the left mid-fusiform cortical thickness and non-reading performance implied the specific role of this area in reading skills, not in general language skills.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Idioma , Reconhecimento Visual de Modelos/fisiologia , Leitura , Povo Asiático , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
19.
Neuropsychologia ; 179: 108464, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36565993

RESUMO

In the field of bilingualism, researchers have proposed an assimilation hypothesis that posits that bilinguals apply the neural network of their native language to process their second language. In Chinese-English bilinguals, the bilateral fusiform gyrus has been identified as the key brain region showing the assimilation process. Specifically, in contrast to left-lateralized activation in the fusiform gyrus in native English speakers, Chinese-English bilinguals recruit the bilateral fusiform cortex to process English words as they do in the processing of Chinese characters. Nevertheless, it is unclear which type of information processing is assimilated in the fusiform gyrus. Using representational similarity analysis (RSA) and psychophysiological interaction (PPI) analysis, this study examined the differences in information representation and functional connectivity between both languages in the fusiform subregions in Chinese-English bilinguals. Univariate analysis revealed that both Chinese and English naming elicited strong activations in the bilateral fusiform gyrus, which confirmed the assimilation process at the activation intensity level. RSA indicated that the neural pattern of English phonological information was assimilated by Chinese in the anterior and middle right fusiform gyrus, while those of orthographic and visual form information were not. Further PPI analysis demonstrated that the neural representation of English phonological information in the right anterior fusiform subregion was related to its interaction with the frontotemporal areas for high-level linguistic processing, while the neural representation of English orthographic information in the right middle fusiform subregion was linked to its interaction with the left inferior occipital cortex for visual processing. These results suggest that, despite the recruitment of similar neural resources in one's native and second languages, the assimilation of information representation is limited in the bilateral fusiform cortex. Our results shed light on the neural mechanisms of second language processing.


Assuntos
Imageamento por Ressonância Magnética , Multilinguismo , Humanos , Leitura , Idioma , Encéfalo/fisiologia , Mapeamento Encefálico
20.
Cortex ; 164: 77-89, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207411

RESUMO

Researchers have identified category-specific brain regions, such as the fusiform face area (FFA) and parahippocampal place area (PPA) in the ventral visual pathway, which respond preferentially to one particular category of visual objects. In addition to their category-specific role in visual object identification and categorization, regions in the ventral visual pathway play critical roles in recognition memory. Nevertheless, it is not clear whether the contributions of those brain regions to recognition memory are category-specific or category-general. To address this question, the present study adopted a subsequent memory paradigm and multivariate pattern analysis (MVPA) to explore category-specific and category-general neural codes of recognition memory in the visual pathway. The results revealed that the right FFA and the bilateral PPA showed category-specific neural patterns supporting recognition memory of faces and scenes, respectively. In contrast, the lateral occipital cortex seemed to carry category-general neural codes of recognition memory. These results provide neuroimaging evidence for category-specific and category-general neural mechanisms of recognition memory in the ventral visual pathway.


Assuntos
Reconhecimento Visual de Modelos , Vias Visuais , Humanos , Vias Visuais/diagnóstico por imagem , Lobo Occipital , Reconhecimento Psicológico , Encéfalo , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA