Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 138(12): 1040-1052, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-33970999

RESUMO

Tight regulation of IL-7Rα expression is essential for normal T-cell development. IL-7Rα gain-of-function mutations are known drivers of T-cell acute lymphoblastic leukemia (T-ALL). Although a subset of patients with T-ALL display high IL7R messenger RNA levels and cases with IL7R gains have been reported, the impact of IL-7Rα overexpression, rather than mutational activation, during leukemogenesis remains unclear. In this study, overexpressed IL-7Rα in tetracycline-inducible Il7r transgenic and Rosa26 IL7R knockin mice drove potential thymocyte self-renewal, and thymus hyperplasia related to increased proliferation of T-cell precursors, which subsequently infiltrated lymph nodes, spleen, and bone marrow, ultimately leading to fatal leukemia. The tumors mimicked key features of human T-ALL, including heterogeneity in immunophenotype and genetic subtype between cases, frequent hyperactivation of the PI3K/Akt pathway paralleled by downregulation of p27Kip1 and upregulation of Bcl-2, and gene expression signatures evidencing activation of JAK/STAT, PI3K/Akt/mTOR and Notch signaling. Notably, we also found that established tumors may no longer require high levels of IL-7R expression upon secondary transplantation and progressed in the absence of IL-7, but remain sensitive to inhibitors of IL-7R-mediated signaling ruxolitinib (Jak1), AZD1208 (Pim), dactolisib (PI3K/mTOR), palbociclib (Cdk4/6), and venetoclax (Bcl-2). The relevance of these findings for human disease are highlighted by the fact that samples from patients with T-ALL with high wild-type IL7R expression display a transcriptional signature resembling that of IL-7-stimulated pro-T cells and, critically, of IL7R-mutant cases of T-ALL. Overall, our study demonstrates that high expression of IL-7Rα can promote T-cell tumorigenesis, even in the absence of IL-7Rα mutational activation.


Assuntos
Carcinogênese , Regulação Leucêmica da Expressão Gênica , Mutação , Proteínas de Neoplasias , Neoplasias Experimentais , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Interleucina-7 , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Interleucina-7/biossíntese , Receptores de Interleucina-7/genética , Transdução de Sinais , Timócitos/metabolismo
2.
Blood ; 138(23): 2383-2395, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280258

RESUMO

Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton's tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc-mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Aminoácidos/metabolismo , Antineoplásicos/uso terapêutico , Asparaginase/uso terapêutico , Piperidinas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adenina/farmacologia , Adenina/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Asparaginase/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Piperidinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Haematologica ; 108(3): 732-746, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35734930

RESUMO

Physiological and pathogenic interleukin-7-receptor (IL7R)-induced signaling provokes glucocorticoid resistance in a subset of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Activation of downstream STAT5 has been suggested to cause steroid resistance through upregulation of anti-apoptotic BCL2, one of its downstream target genes. Here we demonstrate that isolated STAT5 signaling in various T-ALL cell models is insufficient to raise cellular steroid resistance despite upregulation of BCL2 and BCL-XL. Upregulation of anti-apoptotic BCL2 and BCLXL in STAT5-activated T-ALL cells requires steroid-induced activation of NR3C1. For the BCLXL locus, this is facilitated by a concerted action of NR3C1 and activated STAT5 molecules at two STAT5 regulatory sites, whereas for the BCL2 locus this is facilitated by binding of NR3C1 at a STAT5 binding motif. In contrast, STAT5 occupancy at glucocorticoid response elements does not affect the expression of NR3C1 target genes. Strong upregulation of BIM, a NR3C1 pro-apoptotic target gene, upon prednisolone treatment can counterbalance NR3C1/STAT5-induced BCL2 and BCL-XL expression downstream of IL7- induced or pathogenic IL7R signaling. This explains why isolated STAT5 activation does not directly impair the steroid response. Our study suggests that STAT5 activation only contributes to steroid resistance in combination with cellular defects or alternative signaling routes that disable the pro-apoptotic and steroid-induced BIM response.


Assuntos
Glucocorticoides , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Criança , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Fator de Transcrição STAT5/metabolismo , Esteroides , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linfócitos T/metabolismo , Apoptose
4.
BMC Cancer ; 23(1): 618, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400763

RESUMO

BACKGROUND: Gene fusions are important cancer drivers in pediatric cancer and their accurate detection is essential for diagnosis and treatment. Clinical decision-making requires high confidence and precision of detection. Recent developments show RNA sequencing (RNA-seq) is promising for genome-wide detection of fusion products but hindered by many false positives that require extensive manual curation and impede discovery of pathogenic fusions. METHODS: We developed Fusion-sq to overcome existing disadvantages of detecting gene fusions. Fusion-sq integrates and "fuses" evidence from RNA-seq and whole genome sequencing (WGS) using intron-exon gene structure to identify tumor-specific protein coding gene fusions. Fusion-sq was then applied to the data generated from a pediatric pan-cancer cohort of 128 patients by WGS and RNA sequencing. RESULTS: In a pediatric pan-cancer cohort of 128 patients, we identified 155 high confidence tumor-specific gene fusions and their underlying structural variants (SVs). This includes all clinically relevant fusions known to be present in this cohort (30 patients). Fusion-sq distinguishes healthy-occurring from tumor-specific fusions and resolves fusions in amplified regions and copy number unstable genomes. A high gene fusion burden is associated with copy number instability. We identified 27 potentially pathogenic fusions involving oncogenes or tumor-suppressor genes characterized by underlying SVs, in some cases leading to expression changes indicative of activating or disruptive effects. CONCLUSIONS: Our results indicate how clinically relevant and potentially pathogenic gene fusions can be identified and their functional effects investigated by combining WGS and RNA-seq. Integrating RNA fusion predictions with underlying SVs advances fusion detection beyond extensive manual filtering. Taken together, we developed a method for identifying candidate gene fusions that is suitable for precision oncology applications. Our method provides multi-omics evidence for assessing the pathogenicity of tumor-specific gene fusions for future clinical decision making.


Assuntos
Neoplasias , Criança , Humanos , Neoplasias/genética , RNA-Seq , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Medicina de Precisão , Análise de Sequência de RNA/métodos , Fusão Gênica , Sequenciamento Completo do Genoma
5.
Br J Haematol ; 194(3): 613-616, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34212378

RESUMO

T-ALL is rare in infancy with only 10 (1.5%) of 651 patients of that subtype in the Interfant-06 infant ALL trial. We report 3 cases of t(6;7) (TCR/MYB) infant T-cell Acute Lymphoblastic Leukaemia who appear to have a distinct clinical presentation with CNS disease and refractory disease or late relapse.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myb/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Humanos , Lactente , Translocação Genética
9.
PLoS Med ; 13(12): e1002200, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997540

RESUMO

BACKGROUND: Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. METHODS AND FINDINGS: We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor's ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. CONCLUSIONS: Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma , Interleucina-7/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Esteroides/farmacologia , Adolescente , Criança , Pré-Escolar , Exoma , Humanos , Interleucina-7/metabolismo , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Análise de Sequência de DNA
10.
Blood ; 124(20): 3092-100, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25193870

RESUMO

JAK3 is a tyrosine kinase that associates with the common γ chain of cytokine receptors and is recurrently mutated in T-cell acute lymphoblastic leukemia (T-ALL). We tested the transforming properties of JAK3 pseudokinase and kinase domain mutants using in vitro and in vivo assays. Most, but not all, JAK3 mutants transformed cytokine-dependent Ba/F3 or MOHITO cell lines to cytokine-independent proliferation. JAK3 pseudokinase mutants were dependent on Jak1 kinase activity for cellular transformation, whereas the JAK3 kinase domain mutant could transform cells in a Jak1 kinase-independent manner. Reconstitution of the IL7 receptor signaling complex in 293T cells showed that JAK3 mutants required receptor binding to mediate downstream STAT5 phosphorylation. Mice transplanted with bone marrow progenitor cells expressing JAK3 mutants developed a long-latency transplantable T-ALL-like disease, characterized by an accumulation of immature CD8(+) T cells. In vivo treatment of leukemic mice with the JAK3 selective inhibitor tofacitinib reduced the white blood cell count and caused leukemic cell apoptosis. Our data show that JAK3 mutations are drivers of T-ALL and require the cytokine receptor complex for transformation. These results warrant further investigation of JAK1/JAK3 inhibitors for the treatment of T-ALL.


Assuntos
Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Janus Quinase 1/metabolismo , Janus Quinase 3/genética , Leucemia de Células T/genética , Camundongos , Doença Aguda , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ativação Enzimática/efeitos dos fármacos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Masculino , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos BALB C , Mutação , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia
11.
Blood ; 124(4): 567-78, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24904117

RESUMO

Phosphatase and tensin homolog (PTEN)-inactivating mutations and/or deletions are an independent risk factor for relapse of T-cell acute lymphoblastic leukemia (T-ALL) patients treated on Dutch Childhood Oncology Group or German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia protocols. Some monoallelic mutated or PTEN wild-type patients lack PTEN protein, implying that additional PTEN inactivation mechanisms exist. We show that PTEN is inactivated by small deletions affecting a few exons in 8% of pediatric T-ALL patients. These microdeletions were clonal in 3% and subclonal in 5% of patients. Conserved deletion breakpoints are flanked by cryptic recombination signal sequences (cRSSs) and frequently have non-template-derived nucleotides inserted in between breakpoints, pointing to an illegitimate RAG recombination-driven activity. Identified cRSSs drive RAG-dependent recombination in a reporter system as efficiently as bona fide RSSs that flank gene segments of the T-cell receptor locus. Remarkably, equivalent microdeletions were detected in thymocytes of healthy individuals. Microdeletions strongly associate with the TALLMO subtype characterized by TAL1 or LMO2 rearrangements. Primary and secondary xenotransplantation of TAL1-rearranged leukemia allowed development of leukemic subclones with newly acquired PTEN microdeletions. Ongoing RAG activity may therefore actively contribute to the acquisition of preleukemic hits, clonal diversification, and disease progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas com Domínio LIM/genética , PTEN Fosfo-Hidrolase/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Recombinação Genética/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Rearranjo Gênico , Humanos , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transplante Heterólogo
12.
Blood ; 124(25): 3738-47, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25301704

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia (ALL) with gradually improved survival through introduction of intensified chemotherapy. However, therapy-resistant or refractory T-ALL remains a major clinical challenge. Here, we evaluated B-cell lymphoma (BCL)-2 inhibition by the BH3 mimetic ABT-199 as a new therapeutic strategy in human T-ALL. The T-ALL cell line LOUCY, which shows a transcriptional program related to immature T-ALL, exhibited high in vitro and in vivo sensitivity for ABT-199 in correspondence with high levels of BCL-2. In addition, ABT-199 showed synergistic therapeutic effects with different chemotherapeutic agents including doxorubicin, l-asparaginase, and dexamethasone. Furthermore, in vitro analysis of primary patient samples indicated that some immature, TLX3- or HOXA-positive primary T-ALLs are highly sensitive to BCL-2 inhibition, whereas TAL1 driven tumors mostly showed poor ABT-199 responses. Because BCL-2 shows high expression in early T-cell precursors and gradually decreases during normal T-cell differentiation, differences in ABT-199 sensitivity could partially be mediated by distinct stages of differentiation arrest between different molecular genetic subtypes of human T-ALL. In conclusion, our study highlights BCL-2 as an attractive molecular target in specific subtypes of human T-ALL that could be exploited by ABT-199.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Criança , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Células Jurkat , Camundongos Endogâmicos NOD , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/administração & dosagem , Análise de Sobrevida , Células Tumorais Cultivadas
13.
Haematologica ; 101(9): 1010-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27582570

RESUMO

The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates phosphatidylinositol 3-kinase (PI3K)-AKT signaling and is often inactivated by mutations (including deletions) in a variety of cancer types, including T-cell acute lymphoblastic leukemia. Here we review mutation-associated mechanisms that inactivate PTEN together with other molecular mechanisms that activate AKT and contribute to T-cell leukemogenesis. In addition, we discuss how Pten mutations in mouse models affect the efficacy of gamma-secretase inhibitors to block NOTCH1 signaling through activation of AKT. Based on these models and on observations in primary diagnostic samples from patients with T-cell acute lymphoblastic leukemia, we speculate that PTEN-deficient cells employ an intrinsic homeostatic mechanism in which PI3K-AKT signaling is dampened over time. As a result of this reduced PI3K-AKT signaling, the level of AKT activation may be insufficient to compensate for NOTCH1 inhibition, resulting in responsiveness to gamma-secretase inhibitors. On the other hand, de novo acquired PTEN-inactivating events in NOTCH1-dependent leukemia could result in temporary, strong activation of PI3K-AKT signaling, increased glycolysis and glutaminolysis, and consequently gamma-secretase inhibitor resistance. Due to the central role of PTEN-AKT signaling and in the resistance to NOTCH1 inhibition, AKT inhibitors may be a promising addition to current treatment protocols for T-cell acute lymphoblastic leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , PTEN Fosfo-Hidrolase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , PTEN Fosfo-Hidrolase/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptor Notch1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Nat Genet ; 39(5): 593-5, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17435759

RESUMO

We identified a duplication of the MYB oncogene in 8.4% of individuals with T cell acute lymphoblastic leukemia (T-ALL) and in five T-ALL cell lines. The duplication is associated with a threefold increase in MYB expression, and knockdown of MYB expression initiates T cell differentiation. Our results identify duplication of MYB as an oncogenic event and suggest that MYB could be a therapeutic target in human T-ALL.


Assuntos
Diferenciação Celular/genética , Duplicação Gênica , Genes myb/genética , Leucemia-Linfoma de Células T do Adulto/genética , Linfócitos T/patologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Cromossomos Artificiais/genética , Citometria de Fluxo , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica/genética , Testes Genéticos , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Mutação/genética , Hibridização de Ácido Nucleico/genética , RNA Interferente Pequeno/genética , Estatísticas não Paramétricas
15.
PLoS Biol ; 10(11): e1001430, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185135

RESUMO

The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1(-/-) mice have previously been characterized and show developmental blocks at the CD4-CD8- double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1(-/-) mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1(-/-) mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cell-specific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Linfoma/patologia , Linfócitos T/patologia , Via de Sinalização Wnt , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Células Cultivadas , Genes Reporter , Predisposição Genética para Doença , Proteínas de Fluorescência Verde/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linfócitos T/metabolismo , Timócitos/metabolismo , Timócitos/patologia , Timo/metabolismo , Timo/patologia , Ativação Transcricional , Transfecção
17.
Haematologica ; 99(1): 94-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23975177

RESUMO

Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients.


Assuntos
Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transcriptoma , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Imunofenotipagem , Lactente , Leucemia de Células T/mortalidade , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Antígenos de Linfócitos T/genética
19.
Cancer Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885294

RESUMO

Leukemia is characterized by oncogenic lesions that result in a block of differentiation while phenotypic plasticity is retained. A better understanding of how these two phenomena arise during leukemogenesis in humans could help inform diagnosis and treatment strategies. Here, we leveraged the well-defined differentiation states during T-cell development to pinpoint the initiation of T-cell acute lymphoblastic leukemia (T-ALL), an aggressive form of childhood leukemia, and study the emergence of phenotypic plasticity. Single-cell whole genome sequencing of leukemic blasts was combined with multiparameter flow cytometry to couple cell identity and clonal lineages. Irrespective of genetic events, leukemia-initiating cells altered their phenotypes by differentiation and de-differentiation. Construction of phylogenies of individual leukemias using somatic mutations revealed that phenotypic diversity is reflected by the clonal structure of the cancer. The analysis also indicated that the acquired phenotypes are heritable and stable. Together, these results demonstrate a transient period of plasticity during leukemia initiation where phenotypic switches appear unidirectional.

20.
Hemasphere ; 8(7): e117, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948925

RESUMO

Twenty percent of children with T-cell lymphoblastic lymphoma (T-LBL) will relapse and have an extremely poor outcome. Currently, we can identify a genetically low-risk subgroup in pediatric T-LBL, yet these high-risk patients who need intensified or alternative treatment options remain undetected. Therefore, there is an urgent need to recognize these high-risk T-LBL patients through identification of molecular characteristics and biomarkers. By using RNA sequencing which was performed in 29/49 T-LBL patients who were diagnosed in the Princess Maxima Center for Pediatric Oncology between 2018 and 2023, we discovered a previously unknown high-risk biological subgroup of children with T-LBL. This subgroup is characterized by NOTCH1 gene fusions, found in 21% of our T-LBL cohort (6/29). All patients presented with a large mediastinal mass, pleural/pericardial effusions, and absence of blasts in the bone marrow, blood, and central nervous system. Blood CCL17 (C-C Motif Chemokine Ligand 17, TARC) levels were measured at diagnosis in 26/29 patients, and all six patients with NOTCH1 gene fusions patients exclusively expressed highly elevated blood CCL17 levels, defining a novel and previously not known clinically relevant biomarker for T-cell lymphoblastic lymphoma. Four out of these six patients relapsed during therapy, a fifth developed a therapy-related acute myeloid leukemia during maintenance therapy. These data indicate that T-LBL patients with a NOTCH1 fusion have a high risk of relapse which can be easily identified using a blood CCL17 screening at diagnosis. Further molecular characterization through NOTCH1 gene fusion analysis offers these patients the opportunity for treatment intensification or new treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA