Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Immunol ; 22(1): 27, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849432

RESUMO

BACKGROUND: Food proteins differ in their allergenic potential. Currently, there is no predictive and validated bio-assay to evaluate the allergenicity of novel food proteins. The objective of this study was to investigate the potential of a human peripheral blood mononuclear cell (PBMC) gene expression assay to identify biomarkers to predict the allergenicity of legume proteins. RESULTS: PBMCs from healthy donors were exposed to weakly and strongly allergenic legume proteins (2S albumins, and 7S and 11S globulins from white bean, soybean, peanut, pea and lupine) in three experiments. Possible biomarkers for allergenicity were investigated by exposing PBMCs to a protein pair of weakly (white bean) and strongly allergenic (soybean) 7S globulins in a pilot experiment. Gene expression was measured by RNA-sequencing and differentially expressed genes were selected as biomarkers. 153 genes were identified as having significantly different expression levels to the 7S globulin of white bean compared to soybean. Inclusion of multiple protein pairs from 2S albumins (lupine and peanut) and 7S globulins (white bean and soybean) in a larger study, led to the selection of CCL2, CCL7, and RASD2 as biomarkers to distinguish weakly from strongly allergenic proteins. The relevance of these three biomarkers was confirmed by qPCR when PBMCs were exposed to a larger panel of weakly and strongly allergenic legume proteins (2S albumins, and 7S and 11S globulins from white bean, soybean, peanut, pea and lupine). CONCLUSIONS: The PBMC gene expression assay can potentially distinguish weakly from strongly allergenic legume proteins within a protein family, though it will be challenging to develop a generic method for all protein families from plant and animal sources. Graded responses within a protein family might be of more value in allergenicity prediction instead of a yes or no classification.


Assuntos
Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Hipersensibilidade Alimentar/imunologia , Proteínas de Ligação ao GTP/metabolismo , Leucócitos Mononucleares/fisiologia , Albuminas 2S de Plantas/imunologia , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Biomarcadores/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Fabaceae/imunologia , Proteínas de Ligação ao GTP/genética , Globulinas/imunologia , Humanos , Imunoglobulina E/metabolismo , Proteínas de Armazenamento de Sementes/imunologia , Análise de Sequência de RNA , Índice de Gravidade de Doença , Proteínas de Soja/imunologia , Transcriptoma
2.
J Immunol ; 199(4): 1418-1428, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28710255

RESUMO

Activation of the immune system needs to be tightly regulated to provide protection against infections and, at the same time, to prevent excessive inflammation to limit collateral damage to the host. This tight regulation includes regulating the activation of TLRs, which are key players in the recognition of invading microbes. A group of short cationic antimicrobial peptides, called cathelicidins, have previously been shown to modulate TLR activation by synthetic or purified TLR ligands and may play an important role in the regulation of inflammation during infections. However, little is known about how these cathelicidins affect TLR activation in the context of complete and viable bacteria. In this article, we show that chicken cathelicidin-2 kills Escherichia coli in an immunogenically silent fashion. Our results show that chicken cathelicidin-2 kills E. coli by permeabilizing the bacterial inner membrane and subsequently binds the outer membrane-derived lipoproteins and LPS to inhibit TLR2 and TLR4 activation, respectively. In addition, other cathelicidins, including human, mouse, pig, and dog cathelicidins, which lack antimicrobial activity under cell culture conditions, only inhibit macrophage activation by nonviable E. coli In total, this study shows that cathelicidins do not affect immune activation by viable bacteria and only inhibit inflammation when bacterial viability is lost. Therefore, cathelicidins provide a novel mechanism by which the immune system can discriminate between viable and nonviable Gram-negative bacteria to tune the immune response, thereby limiting collateral damage to the host and the risk for sepsis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Proteínas Sanguíneas/fisiologia , Escherichia coli/imunologia , Bactérias Gram-Negativas/imunologia , Ativação de Macrófagos , Viabilidade Microbiana , Precursores de Proteínas/fisiologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Proteínas Sanguíneas/isolamento & purificação , Proteínas Sanguíneas/metabolismo , Catelicidinas/fisiologia , Galinhas/imunologia , Cães , Bactérias Gram-Negativas/fisiologia , Humanos , Inflamação/imunologia , Camundongos , Precursores de Proteínas/isolamento & purificação , Precursores de Proteínas/metabolismo , Suínos/imunologia
3.
Appl Environ Microbiol ; 82(13): 3959-3970, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27107126

RESUMO

UNLABELLED: Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. IMPORTANCE: This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment, including their signaling to human host cells. The results clearly show that the consequences of removal of these polysaccharides are very strain specific, illustrating the diverse and unpredictable roles of these polysaccharides in the environmental interactions of these bacterial strains. In the context of the use of lactobacilli as health-promoting probiotic organisms, this study exemplifies the importance of strain specificity.


Assuntos
Genes Bacterianos , Lactobacillus plantarum/metabolismo , Redes e Vias Metabólicas/genética , Polissacarídeos Bacterianos/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Trato Gastrointestinal/microbiologia , Deleção de Genes , Humanos , Fatores Imunológicos/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/imunologia , Lactobacillus plantarum/fisiologia , Leucócitos Mononucleares/imunologia , Viabilidade Microbiana , Polissacarídeos Bacterianos/genética , Probióticos/metabolismo
4.
Proc Natl Acad Sci U S A ; 108 Suppl 1: 4607-14, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20826446

RESUMO

This article provides an overview of how intestinal epithelial cells (IEC) recognize commensals and how they maintain host-bacterial symbiosis. Endocrine, goblet cells, and enterocytes of the intestinal epithelium express a range of pattern recognition receptors (PRR) to sense the presence of microbes. The best characterized are the Toll-like receptors (TLR) and nucleotide oligomerization domain-like receptors (NLR), which play a key role in pathogen recognition and the induction of innate effectors and inflammation. Several adaptations of PRR signaling have evolved in the gut to avoid uncontrolled and potentially destructive inflammatory responses toward the resident microbiota. PRR signaling in IEC serve to maintain the barrier functions of the epithelium, including the production of secretory IgA (sIgA). Additionally, IECs play a cardinal role in setting the immunosuppressive tone of the mucosa to inhibit overreaction against innocuous luminal antigens. This includes regulation of dendritic cells (DC), macrophage and lymphocyte functions by epithelial secreted cytokines. These immune mechanisms depend heavily on IEC recognition of microbes and are consistent with several studies in knockout mice that demonstrate TLR signaling in the epithelium has a profoundly beneficial role in maintaining homeostasis.


Assuntos
Tolerância Imunológica/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Metagenoma , Receptores de Reconhecimento de Padrão/metabolismo , Simbiose , Animais , Humanos , Imunoglobulina A Secretora/metabolismo , Camundongos , Transdução de Sinais
5.
J Bacteriol ; 195(3): 502-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175652

RESUMO

Sortases are transpeptidases that couple surface proteins to the peptidoglycan of Gram-positive bacteria, and several sortase-dependent proteins (SDPs) have been demonstrated to be crucial for the interactions of pathogenic and nonpathogenic bacteria with their hosts. Here, we studied the role of sortase A (SrtA) in Lactobacillus plantarum WCFS1, a model Lactobacillus for probiotic organisms. An isogenic srtA deletion derivative was constructed which did not show residual SrtA activity. DNA microarray-based transcriptome analysis revealed that the srtA deletion had only minor impact on the full-genome transcriptome of L. plantarum, while the expression of SDP-encoding genes remained completely unaffected. Mass spectrometry analysis of the bacterial cell surface proteome, which was assessed by trypsinization of intact bacterial cells and by LiCl protein extraction, revealed that SrtA is required for the appropriate subcellular location of specific SDPs and for their covalent coupling to the cell envelope, respectively. We further found that SrtA deficiency did not affect the persistence and/or survival of L. plantarum in the gastrointestinal tract of mice. In addition, an in vitro immature dendritic cell (iDC) assay revealed that the removal of surface proteins by LiCl strongly affected the proinflammatory signaling properties of the SrtA-deficient strain but not of the wild type, which suggests a role of SDPs in host immune response modulation.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Lactobacillus plantarum/enzimologia , Transporte Proteico/fisiologia , Aminoaciltransferases/genética , Animais , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Células Dendríticas/imunologia , Trato Gastrointestinal/imunologia , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Lactobacillus plantarum/genética , Lactobacillus plantarum/imunologia , Proteínas de Membrana , Camundongos , Transcriptoma
6.
Microb Cell Fact ; 11: 123, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22967304

RESUMO

BACKGROUND: Specific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background. RESULTS: Through genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-κB reporter cells expressing Toll like receptor (TLR)-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-α after stimulation with the WTA mutants as compared to the wild-type. CONCLUSIONS: The study presented here correlates structural differences in WTA to their functional characteristics, thereby providing important information aiding to improve our understanding of molecular host-microbe interactions and probiotic functionality.


Assuntos
Lactobacillus plantarum/metabolismo , Álcoois Açúcares/metabolismo , Ácidos Teicoicos/metabolismo , Linhagem Celular , Parede Celular/química , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Genoma Bacteriano , Humanos , Lactobacillus plantarum/genética , Mutagênese , NF-kappa B/metabolismo , Transdução de Sinais , Ácidos Teicoicos/farmacologia , Receptor 2 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
BMC Microbiol ; 10: 293, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21080958

RESUMO

BACKGROUND: Modulation of the immune system is one of the most plausible mechanisms underlying the beneficial effects of probiotic bacteria on human health. Presently, the specific probiotic cell products responsible for immunomodulation are largely unknown. In this study, the genetic and phenotypic diversity of strains of the Lactobacillus plantarum species were investigated to identify genes of L. plantarum with the potential to influence the amounts of cytokines interleukin 10 (IL-10) and IL-12 and the ratio of IL-10/IL-12 produced by peripheral blood mononuclear cells (PBMCs). RESULTS: A total of 42 Lactobacillus plantarum strains isolated from diverse environmental and human sources were evaluated for their capacity to stimulate cytokine production in PBMCs. The L. plantarum strains induced the secretion of the anti-inflammatory cytokine IL-10 over an average 14-fold range and secretion of the pro-inflammatory cytokine IL-12 over an average 16-fold range. Comparisons of the strain-specific cytokine responses of PBMCs to comparative genome hybridization profiles obtained with L. plantarum WCFS1 DNA microarrays (also termed gene-trait matching) resulted in the identification of 6 candidate genetic loci with immunomodulatory capacities. These loci included genes encoding an N-acetyl-glucosamine/galactosamine phosphotransferase system, the LamBDCA quorum sensing system, and components of the plantaricin (bacteriocin) biosynthesis and transport pathway. Deletion of these genes in L. plantarum WCFS1 resulted in growth phase-dependent changes in the PBMC IL-10 and IL-12 cytokine profiles compared with wild-type cells. CONCLUSIONS: The altered PBMC cytokine profiles obtained with the L. plantarum WCFS1 mutants were in good agreement with the predictions made by gene-trait matching for the 42 L. plantarum strains. This study therefore resulted in the identification of genes present in certain strains of L. plantarum which might be responsible for the stimulation of anti- or pro-inflammatory immune responses in the gut.


Assuntos
Proteínas de Bactérias/genética , Interleucina-10/imunologia , Interleucina-12/imunologia , Lactobacillus plantarum/genética , Leucócitos Mononucleares/imunologia , Proteínas de Bactérias/imunologia , Células Cultivadas , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-12/genética , Lactobacillus plantarum/imunologia , Lactobacillus plantarum/isolamento & purificação , Leucócitos Mononucleares/microbiologia , Probióticos
8.
Malar J ; 9: 162, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20546583

RESUMO

BACKGROUND: An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that mediate innate and adaptive immune responses is required for effective protection against human malaria and to avoid immunopathology. In malaria endemic countries, this immunological balance may be influenced by micronutrient deficiencies. METHODS: Peripheral blood mononuclear cells from Tanzanian preschool children were stimulated in vitro with Plasmodium falciparum-parasitized red blood cells to determine T-cell responses to malaria under different conditions of nutrient deficiencies and malaria status. RESULTS: The data obtained indicate that zinc deficiency is associated with an increase in TNF response by 37%; 95% CI: 14% to 118% and IFN-gamma response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 371% and a reduction in IFN-gamma production. These results reflect a shift in cytokine profile to a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type II response in magnesium deficiency. The data also reveal a non-specific decrease in cytokine production in children due to iron deficiency anaemia that is largely associated with malaria infection status. CONCLUSIONS: The pathological sequels of malaria potentially depend more on the balance between type I and type II cytokine responses than on absolute suppression of these cytokines and this balance may be influenced by a combination of micronutrient deficiencies and malaria status.


Assuntos
Citocinas/biossíntese , Deficiência de Magnésio/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Células Th1/imunologia , Células Th2/imunologia , Zinco/imunologia , Anemia Ferropriva/sangue , Criança , Pré-Escolar , Citocinas/sangue , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Citometria de Fluxo , Humanos , Lactente , Deficiência de Magnésio/sangue , Malária Falciparum/epidemiologia , Masculino , Tanzânia/epidemiologia , Células Th1/parasitologia , Células Th2/parasitologia , Zinco/sangue , Zinco/deficiência
9.
Malar J ; 9: 130, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20470442

RESUMO

BACKGROUND: Deficiencies in vitamins and mineral elements are important causes of morbidity in developing countries, possibly because they lead to defective immune responses to infection. The aim of the study was to assess the effects of mineral element deficiencies on early innate cytokine responses to Plasmodium falciparum malaria. METHODS: Peripheral blood mononuclear cells from 304 Tanzanian children aged 6-72 months were stimulated with P. falciparum-parasitized erythrocytes obtained from in vitro cultures. RESULTS: The results showed a significant increase by 74% in geometric mean of TNF production in malaria-infected individuals with zinc deficiency (11% to 240%; 95% CI). Iron deficiency anaemia was associated with increased TNF production in infected individuals and overall with increased IL-10 production, while magnesium deficiency induced increased production of IL-10 by 46% (13% to 144%) in uninfected donors. All donors showed a response towards IL-1beta production, drawing special attention for its possible protective role in early innate immune responses to malaria. CONCLUSIONS: In view of these results, the findings show plasticity in cytokine profiles of mononuclear cells reacting to malaria infection under conditions of different micronutrient deficiencies. These findings lay the foundations for future inclusion of a combination of precisely selected set of micronutrients rather than single nutrients as part of malaria vaccine intervention programmes in endemic countries.


Assuntos
Anemia Ferropriva/sangue , Citocinas/biossíntese , Deficiência de Magnésio/sangue , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Zinco/deficiência , Anemia Ferropriva/complicações , Anemia Ferropriva/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos Transversais , Citocinas/sangue , Feminino , Humanos , Lactente , Interleucina-10/biossíntese , Interleucina-10/sangue , Deficiência de Magnésio/complicações , Deficiência de Magnésio/imunologia , Malária Falciparum/complicações , Malária Falciparum/parasitologia , Masculino , Tanzânia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/sangue , Zinco/sangue , Zinco/imunologia
10.
Front Microbiol ; 11: 1822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849426

RESUMO

Bacterial lipoproteins are well-recognized microorganism-associated molecular patterns, which interact with Toll-like receptor (TLR) 2, an important pattern recognition receptor of the host innate immune system. Lipoproteins are conjugated with two- or three-acyl chains (di- or tri-acyl), which is essential for appropriate anchoring in the cell membrane as well as for the interaction with TLR2. Lipoproteins have mostly been studied in pathogens and have established roles in various biological processes, such as nutrient import, cell wall cross-linking and remodeling, and host-cell interaction. By contrast, information on the role of lipoproteins in the physiology and host interaction of probiotic bacteria is scarce. By deletion of lgt, encoding prolipoprotein diacylglyceryl transferase, responsible for lipidation of lipoprotein precursors, we investigated the roles of the collective group of lipoproteins in the physiology of the probiotic model strain Lactobacillus plantarum WCFS1 using proteomic analysis of secreted proteins. To investigate the consequences of the lgt mutation in host-cell interaction, the capacity of mutant and wild-type bacteria to stimulate TLR2 signaling and inflammatory responses was compared using (reporter-) cell-based models. These experiments exemplified the critical contribution of the acyl chains of lipoproteins in immunomodulation. To the best of our knowledge, this is the first study that investigated collective lipoprotein functions in a model strain for probiotic lactobacilli, and we show that the lipoproteins in L. plantarum WCFS1 are critical drivers of anti-inflammatory host responses toward this strain.

11.
Front Immunol ; 11: 644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362896

RESUMO

A healthy immune status is strongly conditioned during early life stages. Insights into the molecular drivers of early life immune development and function are prerequisite to identify strategies to enhance immune health. Even though several starting points for targeted immune modulation have been identified and are being developed into prophylactic or therapeutic approaches, there is no regulatory guidance on how to assess the risk and benefit balance of such interventions. Six early life immune causal networks, each compromising a different time period in early life (the 1st, 2nd, 3rd trimester of gestations, birth, newborn, and infant period), were generated. Thereto information was extracted and structured from early life literature using the automated text mining and machine learning tool: Integrated Network and Dynamical Reasoning Assembler (INDRA). The tool identified relevant entities (e.g., genes/proteins/metabolites/processes/diseases), extracted causal relationships among these entities, and assembled them into early life-immune causal networks. These causal early life immune networks were denoised using GeneMania, enriched with data from the gene-disease association database DisGeNET and Gene Ontology resource tools (GO/GO-SLIM), inferred missing relationships and added expert knowledge to generate information-dense early life immune networks. Analysis of the six early life immune networks by PageRank, not only confirmed the central role of the "commonly used immune markers" (e.g., chemokines, interleukins, IFN, TNF, TGFB, and other immune activation regulators (e.g., CD55, FOXP3, GATA3, CD79A, C4BPA), but also identified less obvious candidates (e.g., CYP1A2, FOXK2, NELFCD, RENBP). Comparison of the different early life periods resulted in the prediction of 11 key early life genes overlapping all early life periods (TNF, IL6, IL10, CD4, FOXP3, IL4, NELFCD, CD79A, IL5, RENBP, and IFNG), and also genes that were only described in certain early life period(s). Concluding, here we describe a network-based approach that provides a science-based and systematical method to explore the functional development of the early life immune system through time. This systems approach aids the generation of a testing strategy for the safety and efficacy of early life immune modulation by predicting the key candidate markers during different phases of early life immune development.


Assuntos
Desenvolvimento Infantil/fisiologia , Biologia Computacional/métodos , Sistema Imunitário/fisiologia , Animais , Biomarcadores , Quimiocinas/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Redes Reguladoras de Genes , Humanos , Doenças do Sistema Imunitário/genética , Lactente , Recém-Nascido , Aprendizado de Máquina
12.
Front Immunol ; 10: 2672, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798593

RESUMO

To assess the safety and efficacy of oral immune interventions, it is important and required by regulation to assess the impact of those interventions not only on the immune system, but also on other organs such as the gut as the porte d'entrée. Despite clear indications that the immune system interacts with several physiological functions of the gut, it is still unknown which pathways and molecules are crucial to assessing the impact of nutritional immune interventions on gut functioning. Here we used a network-based systems biology approach to clarify the molecular relationships between immune system and gut functioning and to identify crucial biomarkers to assess effects on gut functions upon nutritional immune interventions. First, the different gut functionalities were categorized based on literature and EFSA guidance documents. Moreover, an overview of the current assays and methods to measure gut function was generated. Secondly, gut-function related biological processes and adverse events were selected and subsequently linked to the physiological functions of the GI tract. Thirdly, database terms and annotations from the Gene ontology database and the Comparative Toxicogenomics Database (CTD) related to the previously selected gut-function related processes were selected. Next, database terms and annotations were used to identify the pathways and genes involved in those gut functionalities. In parallel, information from CTD was used to identify immune disease related genes. The resulting lists of both gut and immune function genes showed an overlap of 753 genes out of 1,296 gut-function related genes indicating the close gut-immune relationship. Using bioinformatics enrichment tools DAVID and Panther, the identified gut-immune markers were predicted to be involved in motility, barrier function, the digestion and absorption of vitamins and fat, regulation of the digestive system and gastric acid, and protection from injurious or allergenic material. Concluding, here we provide a promising systems biology approach to identify genes that help to clarify the relationships between immune system and gut functioning, with the aim to identify candidate biomarkers to monitor nutritional immune intervention assays for safety and efficacy in the general population. This knowledge helps to optimize future study designs to predict effects of nutritional immune intervention on gut functionalities.


Assuntos
Biomarcadores , Biologia Computacional/métodos , Sistema Digestório/imunologia , Humanos , Imunomodulação
13.
Front Immunol ; 10: 231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828334

RESUMO

Despite scientific advances it remains difficult to predict the risk and benefit balance of immune interventions. Since a few years, network models have been built based on comprehensive datasets at multiple molecular/cellular levels (genes, gene products, metabolic intermediates, macromolecules, cells) to illuminate functional and structural relationships. Here we used a systems biology approach to identify key immune pathways involved in immune health endpoints and rank crucial candidate biomarkers to predict adverse and beneficial effects of nutritional immune interventions. First, a literature search was performed to select the molecular and cellular dynamics involved in hypersensitivity, autoimmunity and resistance to infection and cancer. Thereafter, molecular interaction between molecules and immune health endpoints was defined by connecting their relations by using database information. MeSH terms related to the immune health endpoints were selected resulting in the following selection: hypersensitivity (D006967: 184 genes), autoimmunity (D001327: 564 genes), infection (parasitic, bacterial, fungal and viral: 357 genes), and cancer (D009369: 3173 genes). In addition, a sequence of key processes was determined using Gene Ontology which drives the development of immune health disturbances resulting in the following selection: hypersensitivity (164 processes), autoimmunity (203 processes), infection (187 processes), and cancer (309 processes). Finally, an evaluation of the genes for each of the immune health endpoints was performed, which indicated that many genes played a role in multiple immune health endpoints, but also unique genes were observed for each immune health endpoint. This approach helps to build a screening/prediction tool which indicates the interaction of chemicals or food substances with immune health endpoint-related genes and suggests candidate biomarkers to evaluate risks and benefits. Several anti-cancer drugs and omega 3 fatty acids were evaluated as in silico test cases. To conclude, here we provide a systems biology approach to identify genes/molecules and their interaction with immune related disorders. Our examples illustrate that the prediction with our systems biology approach is promising and can be used to find both negatively and positively correlated interactions. This enables identification of candidate biomarkers to monitor safety and efficacy of therapeutic immune interventions.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Imunoterapia/métodos , Biologia de Sistemas/métodos , Animais , Biomarcadores/metabolismo , Humanos , Prognóstico , Resultado do Tratamento
14.
Front Immunol ; 9: 1972, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30369923

RESUMO

There is much interest in the immunomodulatory properties of dietary fibers but their activity may be influenced by contamination with microbial-associated molecular patterns (MAMPs) such as lipopolysaccharide (LPS) and lipoteichoic acids, which are difficult to remove completely from biological samples. Bone marrow-derived dendritic cells (BMDCs) from TLR2x4 double-KO mice were shown to be a reliable approach to analyse the immunomodulatory properties of a diverse range of dietary fibers, by avoiding immune cell activation due to contaminating MAMPs. Several of the 44 tested dietary fiber preparations induced cytokine responses in BMDCs from TLR2x4 double-KO mice. The particulate fractions of linear arabinan (LA) and branched arabinan (BA) from sugar beet pectin were shown to be strongly immune stimulatory with LA being more immune stimulatory than BA. Enzymatic debranching of BA increased its immune stimulatory activity, possibly due to increased particle formation by the alignment of debranched linear arabinan. Mechanistic studies showed that the immunostimulatory activity of LA and BA was independent of the Dectin-1 recognition but Syk kinase-dependent.


Assuntos
Beta vulgaris/metabolismo , Células Dendríticas/imunologia , Polissacarídeos/metabolismo , Animais , Células Cultivadas , Fibras na Dieta , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polissacarídeos/imunologia , Transdução de Sinais , Relação Estrutura-Atividade , Quinase Syk/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
15.
FEMS Microbiol Ecol ; 93(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029078

RESUMO

Dietary plant cell wall carbohydrates are important in modulating the composition and metabolism of the complex gut microbiota, which can impact on health. Pectin is a major component of plant cell walls. Based on studies in model systems and available bacterial isolates and genomes, the capacity to utilise pectins for growth is widespread among colonic Bacteroidetes but relatively uncommon among Firmicutes. One Firmicutes species promoted by pectin is Eubacterium eligens. Eubacterium eligens DSM3376 utilises apple pectin and encodes a broad repertoire of pectinolytic enzymes, including a highly abundant pectate lyase of around 200 kDa that is expressed constitutively. We confirmed that certain Faecalibacterium prausnitzii strains possess some ability to utilise apple pectin and report here that F. prausnitzii strains in common with E. eligens can utilise the galacturonide oligosaccharides DP4 and DP5 derived from sugar beet pectin. Faecalibacterium prausnitzii strains have been shown previously to exert anti-inflammatory effects on host cells, but we show here for the first time that E. eligens strongly promotes the production of the anti-inflammatory cytokine IL-10 in in vitro cell-based assays. These findings suggest the potential to explore further the prebiotic potential of pectin and its derivatives to re-balance the microbiota towards an anti-inflammatory profile.


Assuntos
Anti-Inflamatórios/imunologia , Colo/microbiologia , Microbioma Gastrointestinal , Oligossacarídeos/metabolismo , Pectinas/metabolismo , Prebióticos/análise , Simbiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Colo/imunologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Malus/química , Malus/metabolismo , Oligossacarídeos/análise , Pectinas/análise
16.
PLoS One ; 12(3): e0173004, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249045

RESUMO

Gut barrier function is key in maintaining a balanced response between the host and its microbiome. The microbiota can modulate changes in gut barrier as well as metabolic and inflammatory responses. This highly complex system involves numerous microbiota-derived factors. The gut symbiont Akkermansia muciniphila is positively correlated with a lean phenotype, reduced body weight gain, amelioration of metabolic responses and restoration of gut barrier function by modulation of mucus layer thickness. However, the molecular mechanisms behind its metabolic and immunological regulatory properties are unexplored. Herein, we identify a highly abundant outer membrane pili-like protein of A. muciniphila MucT that is directly involved in immune regulation and enhancement of trans-epithelial resistance. The purified Amuc_1100 protein and enrichments containing all its associated proteins induced production of specific cytokines through activation of Toll-like receptor (TLR) 2 and TLR4. This mainly leads to high levels of IL-10 similar to those induced by the other beneficial immune suppressive microorganisms such as Faecalibacterium prausnitzii A2-165 and Lactobacillus plantarum WCFS1. Together these results indicate that outer membrane protein composition and particularly the newly identified highly abundant pili-like protein Amuc_1100 of A. muciniphila are involved in host immunological homeostasis at the gut mucosa, and improvement of gut barrier function.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Mucosa Intestinal/imunologia , Verrucomicrobia/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/microbiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Verrucomicrobia/patogenicidade
17.
Front Immunol ; 8: 1000, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878772

RESUMO

Orally ingested bacteria interact with intestinal mucosa and may impact immunity. However, insights in mechanisms involved are limited. In this randomized placebo-controlled cross-over trial, healthy human subjects were given Lactobacillus plantarum supplementation (strain TIFN101, CIP104448, or WCFS1) or placebo for 7 days. To determine whether L. plantarum can enhance immune response, we compared the effects of three stains on systemic and gut mucosal immunity, by among others assessing memory responses against tetanus toxoid (TT)-antigen, and mucosal gene transcription, in human volunteers during induction of mild immune stressor in the intestine, by giving a commonly used enteropathic drug, indomethacin [non-steroidal anti-inflammatory drug (NSAID)]. Systemic effects of the interventions were studies in peripheral blood samples. NSAID was found to induce a reduction in serum CD4+/Foxp3 regulatory cells, which was prevented by L. plantarum TIFN101. T-cell polarization experiments showed L. plantarum TIFN101 to enhance responses against TT-antigen, which indicates stimulation of memory responses by this strain. Cell extracts of the specific L. plantarum strains provoked responses after WCFS1 and TIFN101 consumption, indicating stimulation of immune responses against the specific bacteria. Mucosal immunomodulatory effects were studied in duodenal biopsies. In small intestinal mucosa, TIFN101 upregulated genes associated with maintenance of T- and B-cell function and antigen presentation. Furthermore, L. plantarum TIFN101 and WCFS1 downregulated immunological pathways involved in antigen presentation and shared downregulation of snoRNAs, which may suggest cellular destabilization, but may also be an indicator of tissue repair. Full sequencing of the L. plantarum strains revealed possible gene clusters that might be responsible for the differential biological effects of the bacteria on host immunity. In conclusion, the impact of oral consumption L. plantarum on host immunity is strain dependent and involves responses against bacterial cell components. Some strains may enhance specific responses against pathogens by enhancing antigen presentation and leukocyte maintenance in mucosa. In future studies and clinical settings, caution should be taken in selecting beneficial bacteria as closely related strains can have different effects. Our data show that specific bacterial strains can prevent immune stress induced by commonly consumed painkillers such as NSAID and can have enhancing beneficial effects on immunity of consumers by stimulating antigen presentation and memory responses.

18.
Sci Rep ; 6: 20318, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26843130

RESUMO

Lactobacilli are thought to be beneficial for human health, with lactobacilli-associated infections being confined to immune-compromised individuals. However, Lactobacillus fermentum AGR1487 negatively affects barrier integrity in vitro so we hypothesized that it caused a pro-inflammatory response in the host. We compared germ-free rats inoculated with AGR1487 to those inoculated with another L. fermentum strain, AGR1485, which does not affect in vitro barrier integrity. We showed that rats inoculated with AGR1487 had more inflammatory cells in their colon, higher levels of inflammatory biomarkers, and increased colonic gene expression of pro-inflammatory pathways. In addition, our in vitro studies showed that AGR1487 had a greater capacity to activate TLR signaling and induce pro-inflammatory cytokines in immune cells. This study indicates the potential of strains of the same species to differentially elicit inflammatory responses in the host and highlights the importance of strain characterization in probiotic approaches to treat inflammatory disorders.


Assuntos
Limosilactobacillus fermentum/fisiologia , Boca/microbiologia , Probióticos/administração & dosagem , Animais , Biomarcadores/metabolismo , Colite/etiologia , Colite/metabolismo , Colo/citologia , Colo/microbiologia , Colo/patologia , Citocinas/metabolismo , Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Limosilactobacillus fermentum/isolamento & purificação , Linfócitos/citologia , Linfócitos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Receptores Toll-Like/metabolismo
19.
PLoS One ; 11(1): e0145618, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731096

RESUMO

Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure-function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Animais , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Fibronectinas/metabolismo , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptídeos Cíclicos/química , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transativadores/genética , Transativadores/metabolismo , Virulência/genética
20.
Vaccine ; 33(38): 4807-12, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26241952

RESUMO

Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen ß-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen.


Assuntos
Células Dendríticas/imunologia , Portadores de Fármacos , Endocitose , Células Epiteliais/imunologia , Lactococcus lactis/fisiologia , Vacinas de DNA/genética , Vacinas de DNA/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/microbiologia , Células Epiteliais/microbiologia , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA