Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Annu Rev Cell Dev Biol ; 35: 637-653, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31283380

RESUMO

The brain's synaptic networks endow an animal with powerfully adaptive biological behavior. Maps of such synaptic circuits densely reconstructed in those model brains that can be examined and manipulated by genetic means offer the best prospect for understanding the underlying biological bases of behavior. That prospect is now technologically feasible and a scientifically enabling possibility in neurobiology, much as genomics has been in molecular biology and genetics. In Drosophila, two major advances are in electron microscopic technology, using focused ion beam-scanning electron microscopy (FIB-SEM) milling to capture and align digital images, and in computer-aided reconstruction of neuron morphologies. The last decade has witnessed enormous progress in detailed knowledge of the actual synaptic circuits formed by real neurons. Advances in various brain regions that heralded identification of the motion-sensing circuits in the optic lobe are now extending to other brain regions, with the prospect of encompassing the fly's entire nervous system, both brain and ventral nerve cord.


Assuntos
Drosophila/fisiologia , Neurônios/citologia , Animais , Comportamento Animal/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Biologia Computacional , Drosophila/citologia , Drosophila/genética , Expressão Gênica , Genes Reporter , Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência , Neuroanatomia , Neurônios/metabolismo , Neurônios/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura
2.
J Neurosci ; 42(6): 954-967, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34907026

RESUMO

Stable neural function requires an energy supply that can meet the intense episodic power demands of neuronal activity. Neurons have presumably optimized the volume of their bioenergetic machinery to ensure these power demands are met, but the relationship between presynaptic power demands and the volume available to the bioenergetic machinery has never been quantified. Here, we estimated the power demands of six motor nerve terminals in female Drosophila larvae through direct measurements of neurotransmitter release and Ca2+ entry, and via theoretical estimates of Na+ entry and power demands at rest. Electron microscopy revealed that terminals with the highest power demands contained the greatest volume of mitochondria, indicating that mitochondria are allocated according to presynaptic power demands. In addition, terminals with the greatest power demand-to-volume ratio (∼66 nmol·min-1·µl-1) harbor the largest mitochondria packed at the greatest density. If we assume sequential and complete oxidation of glucose by glycolysis and oxidative phosphorylation, then these mitochondria are required to produce ATP at a rate of 52 nmol·min-1·µl-1 at rest, rising to 963 during activity. Glycolysis would contribute ATP at 0.24 nmol·min-1·µl-1 of cytosol at rest, rising to 4.36 during activity. These data provide a quantitative framework for presynaptic bioenergetics in situ, and reveal that, beyond an immediate capacity to accelerate ATP output from glycolysis and oxidative phosphorylation, over longer time periods presynaptic terminals optimize mitochondrial volume and density to meet power demand.SIGNIFICANCE STATEMENT The remarkable energy demands of the brain are supported by the complete oxidation of its fuel but debate continues regarding a division of labor between glycolysis and oxidative phosphorylation across different cell types. Here, we exploit the neuromuscular synapse, a model for studying neurophysiology, to elucidate fundamental aspects of neuronal energy metabolism that ultimately constrain rates of neural processing. We quantified energy production rates required to sustain activity at individual nerve terminals and compared these with the volume capable of oxidative phosphorylation (mitochondria) and glycolysis (cytosol). We find strong support for oxidative phosphorylation playing a primary role in presynaptic terminals and provide the first in vivo estimates of energy production rates per unit volume of presynaptic mitochondria and cytosol.


Assuntos
Encéfalo/fisiologia , Metabolismo Energético/fisiologia , Tamanho Mitocondrial/fisiologia , Neurônios Motores/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais , Drosophila , Feminino , Mitocôndrias/fisiologia , Transmissão Sináptica/fisiologia
3.
J Neurosci ; 40(8): 1611-1624, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31964719

RESUMO

The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non-ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of female Drosophila larvae, we observed alkaline spikes of over 1 log unit during fictive locomotion in vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+ movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+ antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+ channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non-ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses.SIGNIFICANCE STATEMENT Neurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity.


Assuntos
Ácido Glutâmico/metabolismo , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Drosophila , Feminino , Concentração de Íons de Hidrogênio , Plasticidade Neuronal/fisiologia , Vesículas Sinápticas/metabolismo
4.
Development ; 145(3)2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29361567

RESUMO

The assembly of functional neuronal circuits requires growth cones to extend in defined directions and recognize the correct synaptic partners. Homophilic adhesion between vertebrate Sidekick proteins promotes synapse formation between retinal neurons involved in visual motion detection. We show here that Drosophila Sidekick accumulates in specific synaptic layers of the developing motion detection circuit and is necessary for normal optomotor behavior. Sidekick is required in photoreceptors, but not in their target lamina neurons, to promote the alignment of lamina neurons into columns and subsequent sorting of photoreceptor axons into synaptic modules based on their precise spatial orientation. Sidekick is also localized to the dendrites of the direction-selective T4 and T5 cells, and is expressed in some of their presynaptic partners. In contrast to its vertebrate homologs, Sidekick is not essential for T4 and T5 to direct their dendrites to the appropriate layers or to receive synaptic contacts. These results illustrate a conserved requirement for Sidekick proteins in establishing visual motion detection circuits that is achieved through distinct cellular mechanisms in Drosophila and vertebrates.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Proteínas do Olho/fisiologia , Percepção de Movimento/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Feminino , Genes de Insetos , Masculino , Mutação , Moléculas de Adesão de Célula Nervosa/genética , Células Fotorreceptoras de Invertebrados/citologia , Sinapses/metabolismo , Vias Visuais/citologia , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia
5.
J Exp Biol ; 224(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695211

RESUMO

Understanding the structure and operation of any nervous system has been a subject of research for well over a century. A near-term opportunity in this quest is to understand the brain of a model species, the fruit fly Drosophila melanogaster. This is an enticing target given its relatively small size (roughly 200,000 neurons), coupled with the behavioral richness that this brain supports, and the wide variety of techniques now available to study both brain and behavior. It is clear that within a few years we will possess a connectome for D. melanogaster: an electron-microscopy-level description of all neurons and their chemical synaptic connections. Given what we will soon have, what we already know and the research that is currently underway, what more do we need to know to enable us to understand the fly's brain? Here, we itemize the data we will need to obtain, collate and organize in order to build an integrated model of the brain of D. melanogaster.


Assuntos
Conectoma , Animais , Encéfalo , Drosophila , Drosophila melanogaster , Neurônios
6.
Nature ; 527(7578): 371-4, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26524532

RESUMO

The neural crest is an evolutionary novelty that fostered the emergence of vertebrate anatomical innovations such as the cranium and jaws. During embryonic development, multipotent neural crest cells are specified at the lateral borders of the neural plate before delaminating, migrating and differentiating into various cell types. In invertebrate chordates (cephalochordates and tunicates), neural plate border cells express conserved factors such as Msx, Snail and Pax3/7 and generate melanin-containing pigment cells, a derivative of the neural crest in vertebrates. However, invertebrate neural plate border cells have not been shown to generate homologues of other neural crest derivatives. Thus, proposed models of neural crest evolution postulate vertebrate-specific elaborations on an ancestral neural plate border program, through acquisition of migratory capabilities and the potential to generate several cell types. Here we show that a particular neuronal cell type in the tadpole larva of the tunicate Ciona intestinalis, the bipolar tail neuron, shares a set of features with neural-crest-derived spinal ganglia neurons in vertebrates. Bipolar tail neuron precursors derive from caudal neural plate border cells, delaminate and migrate along the paraxial mesoderm on either side of the neural tube, eventually differentiating into afferent neurons that form synaptic contacts with both epidermal sensory cells and motor neurons. We propose that the neural plate borders of the chordate ancestor already produced migratory peripheral neurons and pigment cells, and that the neural crest evolved through the acquisition of a multipotent progenitor regulatory state upstream of multiple, pre-existing neural plate border cell differentiation programs.


Assuntos
Ciona intestinalis/citologia , Placa Neural/citologia , Células-Tronco Neurais/citologia , Animais , Movimento Celular , Polaridade Celular , Gânglios Espinais/citologia , Larva/citologia , Mesoderma/citologia , Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Neurogênese , Neurônios/citologia , Sinapses , Cauda/citologia , Vertebrados
7.
Nature ; 500(7461): 175-81, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925240

RESUMO

Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive. Here we develop a semi-automated pipeline using electron microscopy to reconstruct a connectome, containing 379 neurons and 8,637 chemical synaptic contacts, within the Drosophila optic medulla. By matching reconstructed neurons to examples from light microscopy, we assigned neurons to cell types and assembled a connectome of the repeating module of the medulla. Within this module, we identified cell types constituting a motion detection circuit, and showed that the connections onto individual motion-sensitive neurons in this circuit were consistent with their direction selectivity. Our results identify cellular targets for future functional investigations, and demonstrate that connectomes can provide key insights into neuronal computations.


Assuntos
Conectoma , Drosophila/fisiologia , Modelos Biológicos , Percepção de Movimento/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Vias Visuais/citologia
8.
J Neurogenet ; 32(3): 149-154, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29790823

RESUMO

In general, neurons in insects and many other invertebrate groups are individually recognizable, enabling us to assign an index number to specific neurons in a manner which is rarely possible in a vertebrate brain. This endows many studies on insect nervous systems with the opportunity to document neurons with great precision, so that in favourable cases we can return to the same neuron or neuron type repeatedly so as to recognize many separate morphological classes. The visual system of the fly's compound eye particularly provides clear examples of the accuracy of neuron wiring, allowing numerical comparisons between representatives of the same cell type, and estimates of the accuracy of their wiring.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Animais
9.
J Exp Biol ; 221(Pt 10)2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29784759

RESUMO

The brain is a network of neurons and its biological output is behaviour. This is an exciting age, with a growing acknowledgement that the comprehensive compilation of synaptic circuits densely reconstructed in the brains of model species is now both technologically feasible and a scientifically enabling possibility in neurobiology, much as 30 years ago genomics was in molecular biology and genetics. Implemented by huge advances in electron microscope technology, especially focused ion beam-scanning electron microscope (FIB-SEM) milling (see Glossary), image capture and alignment, and computer-aided reconstruction of neuron morphologies, enormous progress has been made in the last decade in the detailed knowledge of the actual synaptic circuits formed by real neurons, in various brain regions of the fly Drosophila It is useful to distinguish synaptic pathways that are major, with 100 or more presynaptic contacts, from those that are minor, with fewer than about 10; most neurites are both presynaptic and postsynaptic, and all synaptic sites have multiple postsynaptic dendrites. Work on Drosophila has spearheaded these advances because cell numbers are manageable, and neuron classes are morphologically discrete and genetically identifiable, many confirmed by reporters. Recent advances are destined within the next few years to reveal the complete connectome in an adult fly, paralleling advances in the larval brain that offer the same prospect possibly within an even shorter time frame. The final amendment and validation of segmented bodies by human proof-readers remains the most time-consuming step, however. The value of a complete connectome in Drosophila is that, by targeting to specific neurons transgenes that either silence or activate morphologically identified circuits, and then identifying the resulting behavioural outcome, we can determine the causal mechanism for behaviour from its loss or gain. More importantly, the connectome reveals hitherto unsuspected pathways, leading us to seek novel behaviours for these. Circuit information will eventually be required to understand how differences between brains underlie differences in behaviour, and especially to herald yet more advanced connectomic strategies for the vertebrate brain, with an eventual prospect of understanding cognitive disorders having a connectomic basis. Connectomes also help us to identify common synaptic circuits in different species and thus to reveal an evolutionary progression in candidate pathways.


Assuntos
Conectoma , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Animais , Comportamento Animal , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/fisiologia , Neurônios
10.
PLoS Genet ; 11(12): e1005764, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26713872

RESUMO

Histamine is an important chemical messenger that regulates multiple physiological processes in both vertebrate and invertebrate animals. Even so, how glial cells and neurons recycle histamine remains to be elucidated. Drosophila photoreceptor neurons use histamine as a neurotransmitter, and the released histamine is recycled through neighboring glia, where it is conjugated to ß-alanine to form carcinine. However, how carcinine is then returned to the photoreceptor remains unclear. In an mRNA-seq screen for photoreceptor cell-enriched transporters, we identified CG9317, an SLC22 transporter family protein, and named it CarT (Carcinine Transporter). S2 cells that express CarT are able to take up carcinine in vitro. In the compound eye, CarT is exclusively localized to photoreceptor terminals. Null mutations of cart alter the content of histamine and its metabolites. Moreover, null cart mutants are defective in photoreceptor synaptic transmission and lack phototaxis. These findings reveal that CarT is required for histamine recycling at histaminergic photoreceptors and provide evidence for a CarT-dependent neurotransmitter trafficking pathway between glial cells and photoreceptor terminals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Histamina/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Animais , Linhagem Celular , Drosophila/genética , Proteínas de Drosophila/genética , Transportador 1 de Cátions Orgânicos/genética , Células Fotorreceptoras de Invertebrados/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica
11.
Proc Natl Acad Sci U S A ; 112(44): 13711-6, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483464

RESUMO

We reconstructed the synaptic circuits of seven columns in the second neuropil or medulla behind the fly's compound eye. These neurons embody some of the most stereotyped circuits in one of the most miniaturized of animal brains. The reconstructions allow us, for the first time to our knowledge, to study variations between circuits in the medulla's neighboring columns. This variation in the number of synapses and the types of their synaptic partners has previously been little addressed because methods that visualize multiple circuits have not resolved detailed connections, and existing connectomic studies, which can see such connections, have not so far examined multiple reconstructions of the same circuit. Here, we address the omission by comparing the circuits common to all seven columns to assess variation in their connection strengths and the resultant rates of several different and distinct types of connection error. Error rates reveal that, overall, <1% of contacts are not part of a consensus circuit, and we classify those contacts that supplement (E+) or are missing from it (E-). Autapses, in which the same cell is both presynaptic and postsynaptic at the same synapse, are occasionally seen; two cells in particular, Dm9 and Mi1, form ≥ 20-fold more autapses than do other neurons. These results delimit the accuracy of developmental events that establish and normally maintain synaptic circuits with such precision, and thereby address the operation of such circuits. They also establish a precedent for error rates that will be required in the new science of connectomics.


Assuntos
Drosophila melanogaster/fisiologia , Sinapses/fisiologia , Visão Ocular/fisiologia , Animais
12.
J Neurogenet ; 30(2): 62-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27328842

RESUMO

The brain is a network of neurons, one that generates behaviour, and knowing the former is crucial to understanding the latter. Identifying the exact network of synaptic connections, or connectome, of the fly's central nervous system is now a major objective in Drosophila neurobiology, one that has been initiated in several laboratories, especially the Janelia Research Campus of the Howard Hughes Medical Institute. Progress is most advanced in the optic neuropiles of the visual system. The effort to derive a connectome from these and other neuropile regions is proceeding by various methods of electron microscopy, especially focused-ion beam milling scanning electron microscopy, and relies upon - but is to be carefully distinguished from - published light microscopic methods that reveal the projections of genetically labelled cell types. The latter reveal those neurons that come into close proximity and are therefore candidate synaptic partners. Synaptic partnerships are not in fact reliably revealed by such candidate pairs, anatomical connections often revealing unexpected pathways. Synaptic partnerships identified from ultrastructural features provide a strong heuristic basis to interpret not only functional interactions between identified neurons, but also a powerful means to predict such interactions, and suggest functional pathways not readily predicted from existing experimental evidence. The analysis of circuit function may proceed cell by cell, by examining the behavioural outcome of either interrupting or restoring function to any one element in an anatomically defined circuit, but can be foiled by degeneracy in pathway elements. Circuit information can also be used to identify and analyse circuit motifs, and their role in higher-order network properties. These attempts in Drosophila anticipate parallel attempts in other systems, notably the inner plexiform layer of the vertebrate retina, and augment the one complete connectome already available to us, that available for 30 years in the nematode Caenorhabditis elegans.


Assuntos
Encéfalo/ultraestrutura , Conectoma , Drosophila/fisiologia , Animais , Conectoma/métodos
13.
Cell Tissue Res ; 362(3): 461-79, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26197966

RESUMO

Spider sensory neurons with cell bodies close to various sensory organs are innervated by putative efferent axons from the central nervous system (CNS). Light and electronmicroscopic imaging of immunolabeled neurons has demonstrated that neurotransmitters present at peripheral synapses include γ-aminobutyric acid (GABA), glutamate and octopamine. Moreover, electrophysiological studies show that these neurotransmitters modulate the sensitivity of peripheral sensory neurons. Here, we undertook immunocytochemical investigations to characterize GABA and glutamate-immunoreactive neurons in three-dimensional reconstructions of the spider CNS. We document that both neurotransmitters are abundant in morphologically distinct neurons throughout the CNS. Labeling for the vesicular transporters, VGAT for GABA and VGLUT for glutamate, showed corresponding patterns, supporting the specificity of antibody binding. Whereas some neurons displayed strong immunolabeling, others were only weakly labeled. Double labeling showed that a subpopulation of weakly labeled neurons present in all ganglia expresses both GABA and glutamate. Double labeled, strongly and weakly labeled GABA and glutamate immunoreactive axons were also observed in the periphery along muscle fibers and peripheral sensory neurons. Electron microscopic investigations showed presynaptic profiles of various diameters with mixed vesicle populations innervating muscle tissue as well as sensory neurons. Our findings provide evidence that: (1) sensory neurons and muscle fibers are innervated by morphologically distinct, centrally located GABA- and glutamate immunoreactive neurons; (2) a subpopulation of these neurons may co-release both neurotransmitters; and (3) sensory neurons and muscles are innervated by all of these neurochemically and morphologically distinct types of neurons. The biochemical diversity of presynaptic innervation may contribute to how spiders filter natural stimuli and coordinate appropriate response patterns.


Assuntos
Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Aranhas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Esôfago/metabolismo , Feminino , Imunofluorescência , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Gânglios dos Invertebrados/metabolismo , Imageamento Tridimensional , Músculos/metabolismo , Músculos/ultraestrutura , Aranhas/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura
14.
J Neurogenet ; 28(3-4): 291-301, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24697410

RESUMO

Each neuropil module, or cartridge, in the fly's lamina has a fixed complement of cells. Of five types of monopolar cell interneurons, only L4 has collaterals that invade neighboring cartridges. In the proximal lamina, these collaterals form reciprocal synapses with both the L2 of their own cartridge and the L4 collateral branches from two other neighboring cartridges. During synaptogenesis, L4 collaterals strongly express the cell adhesion protein Kirre, a member of the irre cell recognition module (IRM) group of proteins ( Fischbach et al., 2009 , J Neurogenet, 23, 48-67). The authors show by mutant analysis and gene knockdown techniques that L4 neurons develop their lamina collaterals in the absence of this cell adhesion protein. Using electron microscopy (EM), the authors demonstrate, however, that without Kirre protein these L4 collaterals selectively form fewer synapses. The collaterals of L4 neurons of various genotypes reconstructed from serial-section EM revealed that the number of postsynaptic sites was dramatically reduced in the absence of Kirre, almost eliminating any synaptic input to L4 neurons. A significant reduction of presynaptic sites was also detected in kirre(0) mutants and gene knockdown flies using RNA interference. L4 neuron reciprocal synapses are thus almost eliminated. A presynaptic marker, Brp-short(GFP) confirmed these data using confocal microscopy. This study reveals that removing Kirre protein specifically disrupts the functional L4 synaptic network in the Drosophila lamina.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Proteínas Musculares/genética , Rede Nervosa/citologia , Neurônios/citologia , Lobo Óptico de Animais não Mamíferos/citologia
15.
bioRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895365

RESUMO

Invertebrate chordates, such as the tunicate Ciona, can offer insight into the evolution of the chordate phylum. Anatomical features that are shared between invertebrate chordates and vertebrates may be taken as evidence of their presence in a common chordate ancestor. The central nervous systems of Ciona larvae and vertebrates share a similar anatomy despite the Ciona CNS having ~180 neurons. However, the depth of conservation between the Ciona CNS and those in vertebrates is not resolved. The Ciona caudal CNS, while appearing spinal cord-like, has hitherto been thought to lack motor neurons, bringing into question its homology with the vertebrate spinal cord. We show here that the Ciona larval caudal CNS does, in fact, have functional motor neurons along its length, pointing to the presence of a spinal cord-like structure at the base of the chordates. We extend our analysis of shared CNS anatomy further to explore the Ciona "motor ganglion", which has been proposed to be a homolog of the vertebrate hindbrain, spinal cord, or both. We find that a cluster of neurons in the dorsal motor ganglion shares anatomical location, developmental pathway, neural circuit architecture, and gene expression with the vertebrate cerebellum. However, functionally, the Ciona cluster appears to have more in common with vertebrate cerebellum-like structures, insofar as it receives and processes direct sensory input. These findings are consistent with earlier speculation that the cerebellum evolved from a cerebellum-like structure, and suggest that the latter structure was present in the dorsal hindbrain of a common chordate ancestor.

16.
Bioinformatics ; 27(16): 2216-23, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21742636

RESUMO

MOTIVATION: Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. RESULTS: Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. AVAILABILITY: An open-source reference implementation is available in the Supplementary information. CONTACT: seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Transmissão/métodos , Neurônios/ultraestrutura , Algoritmos , Animais , Membrana Celular/ultraestrutura , Drosophila/ultraestrutura
17.
J Exp Biol ; 215(Pt 8): 1399-411, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22442379

RESUMO

Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to ß-alanine to form ß-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and ß-alanine. In Drosophila, ß-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected ß-alanine is present throughout the fly's entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of ß-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head ß-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize ß-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport ß-alanine and carcinine. This role is consistent with a ß-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina's marginal glia are also a hub involved in the storage and/or disposal of carcinine and ß-alanine.


Assuntos
Vias Biossintéticas , Drosophila melanogaster/metabolismo , Histamina/metabolismo , Retina/metabolismo , beta-Alanina/metabolismo , Animais , Carnosina/análogos & derivados , Carnosina/metabolismo , Drosophila melanogaster/citologia , Eletrorretinografia , Cabeça , Mutação/genética , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Pigmentos Biológicos/metabolismo , Trítio
18.
Curr Biol ; 32(16): 3529-3544.e2, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35839763

RESUMO

The detection of visual motion enables sophisticated animal navigation, and studies on flies have provided profound insights into the cellular and circuit bases of this neural computation. The fly's directionally selective T4 and T5 neurons encode ON and OFF motion, respectively. Their axons terminate in one of the four retinotopic layers in the lobula plate, where each layer encodes one of the four directions of motion. Although the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here, we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to the known cell types. Our reconstruction explains how the ON- and OFF-motion pathways converge. T4 and T5 cells that project to the same layer connect to common synaptic partners and comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.


Assuntos
Drosophila melanogaster , Percepção de Movimento , Animais , Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Vias Visuais/fisiologia
19.
Front Neural Circuits ; 16: 917251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589862

RESUMO

Deriving the detailed synaptic connections of an entire nervous system is the unrealized goal of the nascent field of connectomics. For the fruit fly Drosophila, in particular, we need to dissect the brain, connectives, and ventral nerve cord as a single continuous unit, fix and stain it, and undertake automated segmentation of neuron membranes. To achieve this, we designed a protocol using progressive lowering of temperature dehydration (PLT), a technique routinely used to preserve cellular structure and antigenicity. We combined PLT with low temperature en bloc staining (LTS) and recover fixed neurons as round profiles with darkly stained synapses, suitable for machine segmentation and automatic synapse detection. Here we report three different PLT-LTS methods designed to meet the requirements for FIB-SEM imaging of the Drosophila brain. These requirements include: good preservation of ultrastructural detail, high level of en bloc staining, artifact-free microdissection, and smooth hot-knife cutting to reduce the brain to dimensions suited to FIB-SEM. In addition to PLT-LTS, we designed a jig to microdissect and pre-fix the fly's delicate brain and central nervous system. Collectively these methods optimize morphological preservation, allow us to image the brain usually at 8 nm per voxel, and simultaneously speed the formerly slow rate of FIB-SEM imaging.


Assuntos
Conectoma , Drosophila , Animais , Drosophila/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Volume , Sinapses/fisiologia , Encéfalo/fisiologia
20.
J Neurosci ; 30(15): 5253-68, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20392948

RESUMO

Importin proteins act both at the nuclear pore to promote substrate entry and in the cytosol during signal trafficking. Here, we describe mutations in the Drosophila gene importin-beta11, which has not previously been analyzed genetically. Mutants of importin-beta11 died as late pupae from neuronal defects, and neuronal importin-beta11 was present not only at nuclear pores but also in the cytosol and at synapses. Neurons lacking importin-beta11 were viable and properly differentiated but exhibited discrete defects. Synaptic transmission was defective in adult photoreceptors and at larval neuromuscular junctions (NMJs). Mutant photoreceptor axons formed grossly normal projections and synaptic terminals in the brain, but synaptic arbors on larval muscles were smaller while still containing appropriate synaptic components. Bone morphogenic protein (BMP) signaling was the apparent cause of the observed NMJ defects. Importin-beta11 interacted genetically with the BMP pathway, and at mutant synaptic boutons, a key component of this pathway, phosphorylated mothers against decapentaplegic (pMAD), was reduced. Neuronal expression of an importin-beta11 transgene rescued this phenotype as well as the other observed neuromuscular phenotypes. Despite the loss of synaptic pMAD, pMAD persisted in motor neuron nuclei, suggesting a specific impairment in the local function of pMAD. Restoring levels of pMAD to mutant terminals via expression of constitutively active type I BMP receptors or by reducing retrograde transport in motor neurons also restored synaptic strength and morphology. Thus, importin-beta11 function interacts with the BMP pathway to regulate a pool of pMAD that must be present at the presynapse for its proper development and function.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Carioferinas/metabolismo , Junção Neuromuscular/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Transporte Biológico Ativo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Núcleo Celular/fisiologia , Citosol/fisiologia , Drosophila , Proteínas de Drosophila/genética , Carioferinas/genética , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Mutação , Junção Neuromuscular/citologia , Junção Neuromuscular/crescimento & desenvolvimento , Neurônios/citologia , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transdução de Sinais , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA