Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2305327120, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788308

RESUMO

Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers. This occurred when increasing CQD diameter to decrease the bandgap below 1.1 eV. Here, we develop a rectifying junction among InAs CQD layers, where we use molecular surface modifiers to tune the energy levels of InAs CQDs electrostatically. Previously developed bifunctional dithiol ligands, established for II-VI and IV-VI CQDs, exhibit slow reaction kinetics with III-V surfaces, causing the exchange to fail. We study carboxylate and thiolate binding groups, united with electron-donating free end groups, that shift upward the valence bandedge of InAs CQDs, producing valence band energies as shallow as 4.8 eV. Photophysical studies combined with density functional theory show that carboxylate-based passivants participate in strong bidentate bridging with both In and As on the CQD surface. The tuned CQD layer incorporated into a photodiode structure achieves improved performance with EQE (external quantum efficiency) of 35% (>1 µm) and dark current density < 400 nA cm-2, a >25% increase in EQE and >90% reduced dark current density compared to the reference device. This work represents an advance over previous III-V CQD short-wavelength IR photodetectors (EQE < 5%, dark current > 10,000 nA cm-2).

2.
Biochemistry ; 53(6): 1059-68, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24450765

RESUMO

To ensure high fidelity in translation, many aminoacyl-tRNA synthetases, enzymes responsible for attaching specific amino acids to cognate tRNAs, require proof-reading mechanisms. Most bacterial prolyl-tRNA synthetases (ProRSs) misactivate alanine and employ a post-transfer editing mechanism to hydrolyze Ala-tRNA(Pro). This reaction occurs in a second catalytic site (INS) that is distinct from the synthetic active site. The 2'-OH of misacylated tRNA(Pro) and several conserved residues in the Escherichia coli ProRS INS domain are directly involved in Ala-tRNA(Pro) deacylation. Although mutation of the strictly conserved lysine 279 (K279) results in nearly complete loss of post-transfer editing activity, this residue does not directly participate in Ala-tRNA(Pro) hydrolysis. We hypothesized that the role of K279 is to bind the phosphate backbone of the acceptor stem of misacylated tRNA(Pro) and position it in the editing active site. To test this hypothesis, we carried out pKa, charge neutralization, and free-energy of binding calculations. Site-directed mutagenesis and kinetic studies were performed to verify the computational results. The calculations revealed a considerably higher pKa of K279 compared to an isolated lysine and showed that the protonated state of K279 is stabilized by the neighboring acidic residue. However, substitution of this acidic residue with a positively charged residue leads to a significant increase in Ala-tRNA(Pro) hydrolysis, suggesting that enhancement in positive charge density in the vicinity of K279 favors tRNA binding. A charge-swapping experiment and free energy of binding calculations support the conclusion that the positive charge at position 279 is absolutely necessary for tRNA binding in the editing active site.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Lisina/genética , Aminoacil-tRNA Sintetases/química , Domínio Catalítico , Simulação por Computador , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Edição de RNA , RNA de Transferência de Prolina/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA