Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Malar J ; 17(1): 415, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409136

RESUMO

BACKGROUND: The incidence of malaria in the Americas has decreased markedly in recent years. Honduras and the other countries of Mesoamerica and the island of Hispaniola have set the goal of eliminating native malaria by the year 2020. To achieve this goal, Honduras has recently approved national regulations to expand the possibilities of a shortened double dose primaquine (PQ) treatment for vivax malaria. Considering this new shortened anti-malarial treatment, the high frequency of G6PDd genotypes in Honduras, and the lack of routinely assessment of the G6PD deficiency status, this study aimed at investigating the potential association between the intake of PQ and haemolysis in malaria-infected G6PDd subjects. METHODS: This was a prospective cohort and open-label study. Participants with malaria were recruited. Plasmodium vivax infection was treated with 0.25 mg/kg of PQ daily for 14 days. Safety and signs of haemolysis were evaluated by clinical criteria and laboratory values before and during the 3rd and 7th day of PQ treatment. G6PD status was assessed by a rapid test (CareStart™) and two molecular approaches. RESULTS: Overall 55 participants were enrolled. The frequency of G6PD deficient genotypes was 7/55 (12.7%), where 5/7 (71.4%) were hemizygous A- males and 2/7 (28.6%) heterozygous A- females. Haemoglobin concentrations were compared between G6PD wild type (B) and G6PDd A- subjects, showing a significant difference between the means of both groups in the 3rd and 7th days. Furthermore, a statistically significant difference was evident in the change in haemoglobin concentration between the 3rd day and the 1st day for both genotypes, but there was no statistical difference for the change in haemoglobin concentration between the 7th day and the 1st day. Besides these changes in the haemoglobin concentrations, none of the patients showed signs or symptoms associated with severe haemolysis, and none needed to be admitted to a hospital for further medical attention. CONCLUSIONS: The findings support that the intake of PQ during 14 days of treatment against vivax malaria is safe in patients with a class III variant of G6PDd. In view of the new national regulations in the shortened treatment of vivax malaria for 7 days, it is advisable to be alert of potential cases of severe haemolysis that could occur among G6PD deficient hemizygous males with a class II mutation such as the Santamaria variant, previously reported in the country.


Assuntos
Antimaláricos/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/fisiopatologia , Hemólise , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Primaquina/uso terapêutico , Adolescente , Adulto , Idoso , Criança , Feminino , Honduras , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Risco , Adulto Jovem
2.
Malar J ; 17(1): 320, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30170596

RESUMO

BACKGROUND: Malaria remains a public health problem in some countries of Central America. Rapid diagnostic tests (RDTs) are one of the most useful tools to assist in the diagnosis of malaria in remote areas. Since its introduction, a wide variety of RDTs have been developed for the detection of different parasite antigens. PfHRP2 is the most targeted antigen for the detection of Plasmodium falciparum infections. Genetic mutations and gene deletions are important factors influencing or affecting the performance of rapid diagnostic tests. METHODS: In order to demonstrate the presence or absence of the pfhrp2 and pfhrp3 genes and their flanking regions, a total of 128 blood samples from patients with P. falciparum infection from three Central American countries were analysed through nested or semi-nested PCR approaches. RESULTS: In total, 25.8 and 91.4% of the isolates lacked the region located between exon 1 and exon 2 of pfhrp2 and pfhrp3 genes, respectively. Parasites from the three countries showed deletions of one or both genes. The highest proportion of pfhrp2 deletions was found in Nicaragua while the isolates from Guatemala revealed the lowest number of pfhrp2 deletions. Parasites collected from Honduras showed the highest proportion of phfrp3 absence (96.2%). Twenty-one percent of isolates were double negative mutants for the exon 1-2 segment of both genes, and 6.3% of isolates lacked the full-length coding region of both genes. CONCLUSIONS: This study provides molecular evidence of the existence of P. falciparum isolates lacking the pfhrp2 and pfhrp3 genes, and their flanking regions, in Honduras, Guatemala and Nicaragua. This finding could hinder progress in the control and elimination of malaria in Central America. Continuous evaluation of RDTs and molecular surveillance would be recommended.


Assuntos
Antígenos de Protozoários/genética , Sequência de Bases , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Deleção de Sequência , DNA Intergênico , Guatemala , Honduras , Humanos , Nicarágua
3.
Malar J ; 14: 308, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26249834

RESUMO

BACKGROUND: The frequency of deficient variants of glucose-6-phosphate dehydrogenase (G6PDd) is particularly high in areas where malaria is endemic. The administration of antirelapse drugs, such as primaquine, has the potential to trigger an oxidative event in G6PD-deficient individuals. According to Honduras´ national scheme, malaria treatment requires the administration of chloroquine and primaquine for both Plasmodium vivax and Plasmodium falciparum infections. The present study aimed at investigating for the first time in Honduras the frequency of the two most common G6PDd variants. METHODS: This was a descriptive study utilizing 398 archival DNA samples of patients that had been diagnosed with malaria due to P. vivax, P. falciparum, or both. The most common allelic variants of G6PD: G6PD A+(376G) and G6PD A-(376G/202A) were assessed by two molecular methods (PCR-RFLP and a commercial kit). RESULTS: The overall frequency of G6PD deficient genotypes was 16.08%. The frequency of the "African" genotype A- (Class III) was 11.9% (4.1% A- hemizygous males; 1.5% homozygous A- females; and 6.3% heterozygous A- females). A high frequency of G6PDd alleles was observed in samples from malaria patients residing in endemic regions of Northern Honduras. One case of Santamaria mutation (376G/542T) was detected. CONCLUSIONS: Compared to other studies in the Americas, as well as to data from predictive models, the present study identified a higher-than expected frequency of genotype A- in Honduras. Considering that the national standard of malaria treatment in the country includes primaquine, further research is necessary to ascertain the risk of PQ-triggered haemolytic reactions in sectors of the population more likely to carry G6PD mutations. Additionally, consideration should be given to utilizing point of care technologies to detect this genetic disorder prior administration of 8-aminoquinoline drugs, either primaquine or any new drug available in the near future.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Feminino , Frequência do Gene , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Honduras/epidemiologia , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prevalência
4.
Malar J ; 12: 354, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24093629

RESUMO

BACKGROUND: The Caribbean coast of Central America remains an area of malaria transmission caused by Plasmodium falciparum despite the fact that morbidity has been reduced in recent years. Parasite populations in that region show interesting characteristics such as chloroquine susceptibility and low mortality rates. Genetic structure and diversity of P. falciparum populations in the Honduras-Nicaragua border were analysed in this study. METHODS: Seven neutral microsatellite loci were analysed in 110 P. falciparum isolates from endemic areas of Honduras (n = 77) and Nicaragua (n = 33), mostly from the border region called the Moskitia. Several analyses concerning the genetic diversity, linkage disequilibrium, population structure, molecular variance, and haplotype clustering were conducted. RESULTS: There was a low level of genetic diversity in P. falciparum populations from Honduras and Nicaragua. Expected heterozigosity (H(e)) results were similarly low for both populations. A moderate differentiation was revealed by the F(ST) index between both populations, and two putative clusters were defined through a structure analysis. The main cluster grouped most of samples from Honduras and Nicaragua, while the second cluster was smaller and included all the samples from the Siuna community in Nicaragua. This result could partially explain the stronger linkage disequilibrium (LD) in the parasite population from that country. These findings are congruent with the decreasing rates of malaria endemicity in Central America.


Assuntos
Variação Genética , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Análise por Conglomerados , DNA de Protozoário/genética , Doenças Endêmicas , Honduras , Humanos , Malária Falciparum/epidemiologia , Repetições de Microssatélites , Epidemiologia Molecular , Nicarágua/epidemiologia , Filogenia , Plasmodium falciparum/isolamento & purificação
5.
Malar J ; 11: 119, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22513192

RESUMO

BACKGROUND: Honduras is a tropical country with more than 70% of its population living at risk of being infected with either Plasmodium vivax or Plasmodium falciparum. Laboratory diagnosis is a very important factor for adequate treatment and management of malaria. In Honduras, malaria is diagnosed by both, microscopy and rapid diagnostic tests and to date, no molecular methods have been implemented for routine diagnosis. However, since mixed infections, and asymptomatic and low-parasitaemic cases are difficult to detect by light microscopy alone, identifying appropriate molecular tools for diagnostic applications in Honduras deserves further study. The present study investigated the utility of different molecular tests for the diagnosis of malaria in Honduras. METHODS: A total of 138 blood samples collected as part of a clinical trial to assess the efficacy of chloroquine were used: 69 microscopically confirmed P. falciparum positive samples obtained on the day of enrollment and 69 follow-up samples obtained 28 days after chloroquine treatment and shown to be malaria negative by microscopy. Sensitivity and specificity of microscopy was compared to an 18 s ribosomal RNA gene-based nested PCR, two single-PCR reactions designed to detect Plasmodium falciparum infections, one single-PCR to detect Plasmodium vivax infections, and one multiplex one-step PCR reaction to detect both parasite species. RESULTS: Of the 69 microscopically positive P. falciparum samples, 68 were confirmed to be P. falciparum-positive by two of the molecular tests used. The one sample not detected as P. falciparum by any of the molecular tests was shown to be P. vivax-positive by a reference molecular test indicating a misdiagnosis by microscopy. The reference molecular test detected five cases of P. vivax/P. falciparum mixed infections, which were not recognized by microscopy as mixed infections. Only two of these mixed infections were recognized by a multiplex test while a P. vivax-specific polymerase chain reaction (PCR) detected three of them. In addition, one of the day 28 samples, previously determined to be malaria negative by microscopy, was shown to be P. vivax-positive by three of the molecular tests specific for this parasite. CONCLUSIONS: Molecular tests are valuable tools for the confirmation of Plasmodium species and in detecting mixed infections in malaria endemic regions.


Assuntos
Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Parasitologia/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Primers do DNA/genética , Honduras , Humanos , Plasmodium falciparum/genética , Plasmodium vivax/genética , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade
6.
Malar J ; 10: 376, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22183028

RESUMO

BACKGROUND: In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. METHODS: Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. RESULTS: Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. CONCLUSION: The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Polimorfismo de Nucleotídeo Único , Cloroquina/farmacologia , Honduras , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/isolamento & purificação , Primaquina/farmacologia , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA