Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(7): e1010305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789210

RESUMO

Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Feminino , Lipídeos , Lipoproteínas , Masculino , Camundongos , Ubiquitina , Ubiquitina-Proteína Ligases/genética
2.
J Biol Rhythms ; 34(6): 610-621, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31607207

RESUMO

The time-dependent degradation of core circadian clock proteins is essential for the proper functioning of circadian timekeeping mechanisms that drive daily rhythms in gene expression and, ultimately, an organism's physiology. The ubiquitin proteasome system plays a critical role in regulating the stability of most proteins, including the core clock components. Our laboratory developed a cell-based functional screen to identify ubiquitin ligases that degrade any protein of interest and have started screening for those ligases that degrade circadian clock proteins. This screen identified Spsb4 as a putative novel E3 ligase for RevErbα. In this article, we further investigate the role of Spsb4 and its paralogs in RevErbα stability and circadian rhythmicity. Our results indicate that the paralogs Spsb1 and Spsb4, but not Spsb2 and Spsb3, can interact with and facilitate RevErbα ubiquitination and degradation and regulate circadian clock periodicity.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Linhagem Celular , Ritmo Circadiano/genética , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA