Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Res Natl Inst Stand Technol ; 126: 126013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469441

RESUMO

This paper describes advances in measuring the characteristic spatial distribution of surface temperature and emissivity during laser-metal interaction under conditions relevant for laser powder bed fusion (LPBF) additive manufacturing processes. Detailed descriptions of the measurement process, results, and approaches to determining uncertainties are provided. Measurement uncertainties have complex dependencies on multiple process parameters, so the methodology is demonstrated on one set of process parameters and one material. Well-established literature values for high-purity nickel solidification temperature and emissivity at the solidification temperature were used to evaluate the predicted uncertainty of the measurements. The standard temperature measurement uncertainty is found to be approximately 0.9% of the absolute temperature (16 AC), and the standard relative emissivity measurement uncertainty is found to be approximately 8% at the solidification point of high-purity nickel, both of which are satisfactory. This paper also outlines several potential sources of test uncertainties, which may require additional experimental evaluation. The largest of these are the metal vapor and ejecta that are produced as process by-products, which can potentially affect the imaging quality, reflectometry results, and thermal signature of the process, while also affecting the process of laser power delivery. Furthermore, the current paper focuses strictly on the uncertainties of the emissivity and temperature measurement approach and therefore does not detail a variety of uncertainties associated with experimental controls that must be evaluated for future generation of reference data.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38903904

RESUMO

The Additive Manufacturing Benchmark Series (AM Bench) is a NIST-led organization that provides a continuing series of additive manufacturing benchmark measurements, challenge problems, and conferences with the primary goal of enabling modelers to test their simulations against rigorous, highly controlled additive manufacturing benchmark measurement data. To this end, single-track (1D) and pad (2D) scans on bare plate nickel alloy 718 were completed with thermography, cross-sectional grain orientation and local chemical composition maps, and cross-sectional melt pool size measurements. The laser power, scan speed, and laser spot size were varied for single tracks, and the scan direction was varied for pads. This article focuses on the cross-sectional melt pool size measurements and presents the predictions from challenge problems. Single-track depth correlated with volumetric energy density while width did not (within the studied parameters). The melt pool size for pad scans was greater than single tracks due to heat buildup. Pad scan melt pool depth was reduced when the laser scan direction and gas flow direction were parallel. The melt pool size in pad scans showed little to no trend against position within the pads. Uncertainty budgets for cross-sectional melt pool size from optical micrographs are provided for the purpose of model validation.

3.
Manuf Lett ; 232020.
Artigo em Inglês | MEDLINE | ID: mdl-32855904

RESUMO

High-speed thermography is useful tool for researching the laser powder bed fusion process by providing thermal information in heat affected zone. However, it is not directly possible to ascertain the position of the laser spot with respect to the melt pool, which could provide key information regarding how laser energy is distributed and absorbed. In this paper, we demonstrate a procedure for registering the laser spot position with the melt pool using a bright illumination source co-axially aligned with the laser to project a sharp spot on the build plane. This spot is fixed to the laser position and used as a reference frame for registering the laser spot with the melt pool radiance temperature distribution. Measurement results demonstrate the effect of varying process parameters (laser power and scan speed) on the melt pool thermal field and respective position of the laser spot.

4.
Addit Manuf ; 362020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34141601

RESUMO

Melt pool monitoring (MPM) is a technique used in laser powder bed fusion (LPBF) to extract features from insitu sensor signals that correlate to defect formation or general part fabrication quality. Various melt pool phenomena have been shown to relate to measured transient absorption of the laser energy, which in turn, can be relatable to the melt pool emission measured in MPM systems. This paper describes use of a reflectometer-based instrument to measure the dynamic laser energy absorption during single-line laser scans. Scans are conducted on bare metal and single powder layer of nickel alloy 625 (IN625) at a range of laser powers. In addition, a photodetector aligned co-axially with the laser, often found in commercial LPBF monitoring systems, synchronously measured of the incandescent emission from the melt pool with the dynamic laser absorption. Relationships between the dynamic laser absorption, co-axial MPM, and surface features on the tracks are observed, providing illustration of the melt pool dynamics that formed these features. Time-integrated measurements of laser absorption are shown to correlate well with MPM signal, as well as indicate the transition between conduction and keyhole mode. This transition is corroborated by metallographic cross-section measurement, as well as topographic measurements of the solidified tracks. Ultimately, this paper exemplifies the utility of dynamic laser absorption measurements to inform both the physical nature of the melt pool dynamics, as well as interpretation of process monitoring signals.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34123701

RESUMO

The complex physical nature of the laser powder bed fusion (LPBF) process warrants use of multiphysics computational simulations to predict or design optimal operating parameters or resultant part qualities such as microstructure or defect concentration. Many of these simulations rely on tuning based on characteristics of the laser-induced melt pool, such as the melt pool geometry (length, width, and depth). Additionally, many of numerous interacting variables that make LPBF process so complex can be reduced and controlled by performing simple, single track experiments on bare (no powder) substrates, yet still produce important and applicable physical results. The 2018 Additive Manufacturing Benchmark (AM Bench) tests and measurements were designed for this application. This paper describes the experiment design for the tests conducted using LPBF on bare metal surfaces, and the measurement results for the melt pool geometry and melt pool cooling rate performed on two LPBF systems. Several factors, such as accurate laser spot size, were determined after the 2018 AM Bench conference, with results of those additional tests reported here.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28579666

RESUMO

The National Institute of Standards and Technology's (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system's operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described.

7.
Appl Opt ; 42(19): 3832-42, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12868822

RESUMO

The Monte Carlo method has been applied to numerical modeling of an integrating sphere designed for hemispherical-directional reflectance factor measurements. It is shown that a conventional algorithm of backward ray tracing used for estimation of characteristics of the radiation field at a given point has slow convergence for small source-to-sphere-diameter ratios. A newly developed algorithm that substantially improves the convergence by calculation of direct source-induced irradiation for every point of diffuse reflection of rays traced is described. The method developed is applied to an integrating sphere reflectometer for the visible and infrared spectral ranges. Parametric studies of hemispherical radiance distributions for radiation incident onto the sample center were performed. The deviations of measured sample reflectance from the actual reflectance as a result of various factors were computed. The accuracy of the results, adequacy of the reflectance model, and other important aspects of the algorithm implementation are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA