Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356418

RESUMO

Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.

2.
Annu Rev Cell Dev Biol ; 26: 639-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19575651

RESUMO

The vascular and the nervous systems of vertebrates share many features with similar and often overlapping anatomy. The parallels between these two systems extend to the molecular level, where recent work has identified ever-increasing similarities between the molecular mechanisms employed in the specification, differentiation, and patterning of both systems. This review discusses some of the most recent literature on this subject, with particular emphasis on the roles that the Ephrin, Semaphorin, Netrin, and Slit signaling pathways play in vascular development.


Assuntos
Vasos Sanguíneos/embriologia , Sistema Nervoso/embriologia , Animais , Vasos Sanguíneos/metabolismo , Padronização Corporal , Sistema Cardiovascular/embriologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sistema Nervoso/metabolismo , Vertebrados/embriologia
3.
Traffic ; 22(4): 111-122, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33336828

RESUMO

Exocytosis is a fundamental process in physiology, that ensures communication between cells, organs and even organisms. Hormones, neuropeptides and antibodies, among other cargoes are packed in exocytic vesicles that need to reach and fuse with the plasma membrane to release their content to the extracellular milieu. Hundreds of proteins participate in this process and several others in its regulation. We report here a novel component of the exocytic machinery, the Drosophila transmembrane immunophilin Zonda (Zda), previously found to participate in autophagy. Zda is highly expressed in secretory tissues, and regulates exocytosis in at least three of them: the ring gland, insulin-producing cells and the salivary gland. Using the salivary gland as a model system, we found that Zda is required at final steps of the exocytic process for fusion of secretory granules to the plasma membrane. In a genetic screen we identified the small GTPase RalA as a crucial regulator of secretory granule exocytosis that is required, similarly to Zda, for fusion between the secretory granule and the plasma membrane.


Assuntos
Exocitose , Imunofilinas , Autofagia , Membrana Celular , Vesículas Secretórias
4.
PLoS Genet ; 12(5): e1006073, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27223464

RESUMO

Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/biossíntese , Prolil Hidroxilases/genética , Transcrição Gênica , Animais , Hipóxia Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , Oxigênio/metabolismo , Prolil Hidroxilases/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(11): 4025-30, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550463

RESUMO

Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Homeostase/fisiologia , Prolil Hidroxilases/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/genética , Autofagia/genética , Western Blotting , Pesos e Medidas Corporais , Cromatografia Líquida , Primers do DNA/genética , Proteínas de Drosophila/genética , Corpo Adiposo/citologia , Feminino , Técnicas de Silenciamento de Genes , Hidroxilação , Prolil Hidroxilases/genética , Processamento de Proteína Pós-Traducional/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Ribossômicas/genética , Espectrometria de Massas em Tandem , Resposta a Proteínas não Dobradas/genética
6.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38903077

RESUMO

Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.

7.
Dev Dyn ; 241(12): 1842-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22972677

RESUMO

Living organisms are constantly exposed to environmental and genetic perturbations. Biological robustness enables these organisms to maintain their functional stability in the presence of external or internal changes. It has been proposed that microRNAs (miRNAs), small non-coding regulatory RNAs, contribute to robustness of gene regulatory networks. The hypoxic response is a major and well-characterized example of a cellular and systemic response to environmental stress that needs to be robust. miRNAs regulate the response to hypoxia, both at the level of the main transcription factor that mediates this response, the hypoxia-inducible factor (HIF), and at the level of one of the most important systemic outcomes of the response: angiogenesis. In this review, we will take the hypoxic response as a paradigm of miRNAs participating in circuits that provide robustness to biological responses.


Assuntos
Hipóxia/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , Estresse Fisiológico , Animais , Humanos , Hipóxia/patologia , Hipóxia/fisiopatologia , Fatores de Transcrição/metabolismo
8.
Biochim Biophys Acta Mol Cell Res ; 1869(5): 119212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35090967

RESUMO

Autophagy is a homeostatic process by which misfolded proteins, organelles and cytoplasmic material are engulfed in autophagosomal vesicles and degraded through a lisosomal pathway. FKBP8 is a member of the FK506-binding proteins family (FKBP) usually found in mitochondria and the endoplasmic reticulum. This protein plays a critical role in cell functions such as protein trafficking and folding. In the present report we demonstrate that the depletion of FKBP8 abrogated autophagy activation induced by starvation, whereas the overexpression of this protein triggered the autophagy cascade. We found that FKBP8 co-localizes with ATG14L and BECN1, both members of the VPS34 lipid kinase complex, which regulates the initial steps in the autophagosome formation process. We have also demonstrated that FKBP8 is necessary for VPS34 activity. Our findings indicate that the regulatory function of FKBP8 in the autophagy process depends of its transmembrane domain. Surprisingly, this protein was not found in autophagosomal vesicles, which reinforces the notion that the FKBP8 only participates in the initial steps of the autophagosome formation process. Taken together, our data provide evidence that FKBP8 modulates the early steps of the autophagosome formation event by interacting with the VPS34 lipid kinase complex. SUMMARY: In this article, the protein FKBP38 is reported to be a novel modulator of the initial steps of the autophagic pathway, specifically in starvation-induced autophagy. FKBP38 interacts with the VPS34 lipid kinase complex, with the transmembrane domain of FKBP38 being critical for its biological function.


Assuntos
Autofagia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/química , Proteína Beclina-1/metabolismo , Proteínas de Transporte/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/genética
9.
Autophagy ; 18(4): 909-920, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34793268

RESUMO

Macroautophagy/autophagy, a mechanism of degradation of intracellular material required to sustain cellular homeostasis, is exacerbated under stress conditions like nutrient deprivation, protein aggregation, organelle senescence, pathogen invasion, and hypoxia, among others. Detailed in vivo description of autophagic responses triggered by hypoxia is limited. We have characterized the autophagic response induced by hypoxia in Drosophila melanogaster. We found that this process is essential for Drosophila adaptation and survival because larvae with impaired autophagy are hypersensitive to low oxygen levels. Hypoxia triggers a bona fide autophagic response, as evaluated by several autophagy markers including Atg8, LysoTracker, Lamp1, Pi3K59F/Vps34 activity, transcriptional induction of Atg genes, as well as by transmission electron microscopy. Autophagy occurs in waves of autophagosome formation and maturation as hypoxia exposure is prolonged. Hypoxia-triggered autophagy is induced cell autonomously, and different tissues are sensitive to hypoxic treatments. We found that hypoxia-induced autophagy depends on the basic autophagy machinery but not on the hypoxia master regulator sima/HIF1A. Overall, our studies lay the foundation for using D. melanogaster as a model system for studying autophagy under hypoxic conditions, which, in combination with the potency of genetic manipulations available in this organism, provides a platform for studying the involvement of autophagy in hypoxia-associated pathologies and developmentally regulated processes.Abbreviations: Atg: autophagy-related; FYVE: zinc finger domain from Fab1 (yeast ortholog of PIKfyve); GFP: green fluorescent protein; HIF: hypoxia-inducible factor; hsf: heat shock factor; Hx: hypoxia; mCh: mCherry; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; Rheb: Ras homolog enriched in brain; sima: similar; Stv: Starvation; TEM: transmission electron microscopy; Tor: target of rapamycin; UAS: upstream activating sequence; Vps: vacuolar protein sorting.


Assuntos
Proteínas de Drosophila , Proteínas de Saccharomyces cerevisiae , Animais , Autofagia/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Hipóxia , Fosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Curr Biol ; 18(7): 532-7, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18394891

RESUMO

Cell movements represent a major driving force in embryonic development, tissue repair, and tumor metastasis [1]. The migration of single cells has been well studied, predominantly in cell culture [2, 3]; however, in vivo, a greater variety of modes of cell movement occur, including the movements of cells in clusters, strands, sheets, and tubes, also known as collective cell migrations [4, 5]. In spite of the relevance of these types of movements in both normal and pathological conditions, the molecular mechanisms that control them remain predominantly unknown. Epithelial follicle cells of the Drosophila ovary undergo several dynamic morphological changes, providing a genetically tractable model [6]. We found that anterior follicle cells, including border cells, mutant for the gene hindsight (hnt) accumulated excess cell-cell adhesion molecules and failed to undergo their normal collective movements. In addition, HNT affected border cell cluster cohesion and motility via effects on the JNK and STAT pathways, respectively. Interestingly, reduction of expression of the mammalian homolog of HNT, RREB1, by siRNA inhibited collective cell migration in a scratch-wound healing assay of MCF10A mammary epithelial cells, suppressed surface activity, retarded cell spreading after plating, and led to the formation of immobile, tightly adherent cell colonies. We propose that HNT and RREB1 are essential to reduce cell-cell adhesion when epithelial cells within an interconnected group undergo dynamic changes in cell shape.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Mama/citologia , Linhagem Celular , Células Epiteliais/fisiologia , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Morfogênese/fisiologia , Ovário/citologia , Ovário/crescimento & desenvolvimento , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia
11.
Mol Biol Cell ; 28(22): 3070-3081, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904211

RESUMO

Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Imunofilinas/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Imunofilinas/genética , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais
14.
Cell Cycle ; 8(18): 2917-25, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19729999

RESUMO

We are using Drosophila follicle cells to study the mechanisms that promote cell motility. Using genetics we identified a gene regulatory network that controls the dynamic pattern of activation of JAK/STAT in anterior follicle cells. Under the influence of a graded signal, Unpaired (UPD), JAK/STAT becomes activated first in a graded fashion. STAT, in turn, locally activates its own repressor, Apontic (APT), a new feedback regulator of JAK/STAT signaling. High levels of JAK/STAT also activate Slow Border Cells (SLBO), which undermines APT-mediated repression. In this way, cells that achieve a high JAK/STAT level maintain SLBO expression and form border cells, which then migrate out of the cell layer. Cells with lower JAK/STAT activity express more APT than SLBO, ultimately lose STAT activity, and remain in the follicular epithelium. To better understand how the graded signal is converted to an all-or-none decision to move or stay, we developed a mathematical model. Simulations using the model reproduce the observed dynamics of JAK/STAT expression in the wild type and in several mutant situations. By combining biological experiments and mathematical modeling, we can achieve a more sophisticated understanding of how cells interpret molecular gradients.


Assuntos
Proteínas de Drosophila/metabolismo , Células Epiteliais/fisiologia , Janus Quinases/metabolismo , Modelos Biológicos , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição/metabolismo , Animais , Movimento Celular , Drosophila , Transdução de Sinais
15.
Dev Cell ; 14(5): 726-38, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18477455

RESUMO

In both normal development and in a variety of pathological conditions, epithelial cells can acquire migratory and invasive properties. Border cells in the Drosophila ovary provide a genetically tractable model for elucidating the mechanisms controlling such behaviors. Here we report the identification of a mutant, apontic (apt), in which the migratory population expanded and separation from the epithelium was impeded. This phenotype resembled gain-of-function of JAK/STAT activity. Gain-of-function of APT also mimicked loss of function of STAT and its key downstream target, SLBO. APT expression was induced by STAT, which bound directly to sites in the apt gene. The data suggest that a regulatory circuit between STAT, APT, and SLBO functions to convert an initially graded signal into an all-or-nothing activation of JAK/STAT and thus to proper cell specification and migration. These findings are supported by a mathematical model, which accurately simulates wild-type and mutant phenotypes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Retroalimentação Fisiológica , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Alelos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Movimento Celular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética
16.
Nat Protoc ; 2(10): 2467-73, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17947988

RESUMO

This protocol describes a method for the dissection of egg chambers from intact Drosophila females and culture conditions that permit live imaging of them, with a particular emphasis on stage 9. This stage of development is characterized by oocyte growth and patterning, outer follicle cell rearrangement and migration of border cells. Although in vitro culture of egg chambers of later developmental stages has long been possible, until recently stage 9 egg chambers could only be kept alive for short periods, did not develop normally, and border cell migration failed entirely. We have established culture conditions that support overall egg chamber development including border cell migration in vitro. This protocol makes possible direct observation of molecular and cellular dynamics in both wild-type and mutant egg chambers, and opens the door to testing of pharmacological inhibitors and the use of biosensors. The entire protocol takes approximately 24 h while the preparation of egg chambers for live imaging requires only 15-20 min.


Assuntos
Técnicas de Cultura de Células , Drosophila melanogaster/citologia , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/citologia , Ovário/citologia
17.
J Biol Chem ; 277(45): 42447-55, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12202479

RESUMO

Different mitochondrial nitric-oxide synthase (mtNOS) isoforms have been described in rat and mouse tissues, such as liver, thymus, skeletal muscle, and more recently, heart and brain. The modulation of these variants by thyroid status, hypoxia, or gene deficiency opens a broad spectrum of mtNOS-dependent tissue-specific functions. In this study, a new NOS variant is described in rat brain with an M(r) of 144 kDa and mainly localized in the inner mitochondrial membrane. During rat brain maturation, the expression and activity of mtNOS were maximal at the late embryonic stages and early postnatal days followed by a decreased expression in the adult stage (100 +/- 9 versus 19 +/- 2 pmol of [(3)H]citrulline/min/mg of protein, respectively). This temporal pattern was opposite to that of the cytosolic 157-kDa nNOS protein. Mitochondrial redox changes followed the variations in mtNOS activity: mtNOS-dependent production of hydrogen peroxide was maximal in newborns and decreased markedly in the adult stage, thus reflecting the production and utilization of mitochondrial matrix nitric oxide. Moreover, the activity of brain Mn-superoxide dismutase followed a developmental pattern similar to that of mtNOS. Cerebellar granular cells isolated from newborn rats and with high mtNOS activity exhibited maximal proliferation rates, which were decreased by modifying the levels of either hydrogen peroxide or nitric oxide. Altogether, these findings support the notion that a coordinated modulation of mtNOS and Mn-superoxide dismutase contributes to establish the rat brain redox status and participate in the normal physiology of brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Mitocôndrias/enzimologia , Óxido Nítrico Sintase/metabolismo , Envelhecimento , Animais , Encéfalo/enzimologia , Cálcio/farmacologia , Fracionamento Celular , Desenvolvimento Embrionário e Fetal , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Variação Genética , Cinética , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I , Ratos , Ratos Wistar , Partículas Submitocôndricas/enzimologia
18.
J Neurochem ; 89(1): 248-56, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15030409

RESUMO

Intracellular activation and trafficking of extracellular signal-regulated protein kinases (ERK) play a significant role in cell cycle progression, contributing to developmental brain activities. Additionally, mitochondria participate in cell signalling through energy-linked functions, redox metabolism and activation of pro- or anti-apoptotic proteins. The purpose of the present study was to analyze the presence of ERK1/2 in mitochondria during rat brain development. Immunoblotting, immune electron microscopy and activity assays demonstrated that ERK1/2 are present in fully active brain mitochondria at the outer membrane/intermembrane space fraction. Besides, it was observed that ERK1/2 translocation to brain mitochondria follows a developmental pattern which is maximal between E19-P2 stages and afterwards declines at P3, just before maximal translocation to nucleus, and up to adulthood. Most of mitochondrial ERK1/2 were active; upstream phospho-MAPK/ERK kinases (MEK1/2) were also detected in the brain organelles. Mitochondrial phospho-ERK1/2 increased at 1 microm hydrogen peroxide (H(2)O(2)) concentration, but it decreased at higher 50-100 microm H(2)O(2), almost disappearing after the organelles were maximally stimulated to produce H(2)O(2) with antimycin. Our results suggest that developmental mitochondrial activation of ERK1/2 cascade contributes to its nuclear translocation effects, providing information about mitochondrial energetic and redox status to the proliferating/differentiating nuclear pathways.


Assuntos
Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Mitocôndrias/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores Etários , Animais , Química Encefálica , Ativação Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , MAP Quinase Quinase 1 , MAP Quinase Quinase 2 , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Oxidantes/farmacologia , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Wistar , Frações Subcelulares/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA