RESUMO
Chitin, a linear polymer of N-acetyl-d-glucosamine, and chitosans, fully or partially deacetylated derivatives of chitin, are known to elicit defense reactions in higher plants. We compared the ability of chitin and chitosan oligomers and polymers (chitin oligomers with degree of polymerization [DP] 3 to 8; chitosan oligomers with degree of acetylation [DA] 0 to 35% and DP 3 to 15; chitosan polymers with DA 1 to 60% and DP approximately 1,300) to elicit an oxidative burst indicative of induced defense reactions in Arabidopsis thaliana seedlings. Fully deacetylated chitosans were not able to trigger a response; elicitor activity increased with increasing DA of chitosan polymers. Partially acetylated chitosan oligomers required a minimum DP of 6 and at least four N-acetyl groups to trigger a response. Invariably, elicitation of an oxidative burst required the presence of the chitin receptor AtCERK1. Our results as well as previously published studies on chitin and chitosan perception in plants are best explained by a new general model of LysM-containing receptor complexes in which two partners form a long but off-set chitin-binding groove and are, thus, dimerized by one chitin or chitosan molecule, sharing a central GlcNAc unit with which both LysM domains interact. To verify this model and to distinguish it from earlier models, we assayed elicitor and inhibitor activities of selected partially acetylated chitosan oligomers with fully defined structures. In contrast to the initial 'continuous groove', the original 'sandwich', or the current 'sliding mode' models for the chitin/chitosan receptor, the here-proposed 'slipped sandwich' model-which builds on these earlier models and represents a consensus combination of these-is in agreement with all experimental observations.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Quitina/metabolismo , Quitosana/metabolismo , Oryza/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Acetilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quitina/química , Quitosana/química , Dimerização , Modelos Biológicos , Modelos Moleculares , Oryza/genética , Proteínas Serina-Treonina Quinases/genética , Explosão Respiratória , Plântula/genética , Plântula/fisiologiaRESUMO
Ulvans from green algae are promising compounds for plant protection because they are environmentally friendly and induce plant defense responses. We analyzed the structure-function relationship of ulvan polymers and oligomers for their elicitor activity in suspension-cultured cells of three dicot species. The polysaccharide from Ulva fasciata was characterized regarding its monosaccharide composition, degree of sulfation, and molecular mass. The polymer was partially depolymerized using acid hydrolysis, and the oligomers were separated using size exclusion chromatography. The oligomeric fractions were analyzed revealing mostly sulfated and de-sulfated ulvan dimers. Both the polymer and the oligomer fractions induced an NADPH oxidase-dependent oxidative burst in plant cells. The elicitor activity of the ulvan dimers did not require sulfation. By identifying the smallest elicitor-active unit, HexA-Rha, we took an important next step to understand how the structure influences ulvan elicitor responses. The desulfated ulvan dimer is discussed as a promising agro-biologic for sustainable agriculture.
Assuntos
Polissacarídeos/química , Ulva/química , Clorófitas/química , Cromatografia em Gel/métodos , Hidrólise , Peso Molecular , Oligossacarídeos/química , Oxirredução , Imunidade Vegetal , Polímeros/química , Explosão Respiratória , Ulva/metabolismoRESUMO
Biomass waste products from green algae have recently been given new life, as these polysaccharides have potential applications in industry, agriculture, and medicine. One such polysaccharide group called ulvans displays many different, potentially useful properties that arise from their structural versatility. Hence, performing structural analyses on ulvan is crucial for future applications. However, chemical reaction-based analysis methods cannot fully characterize ulvan and tend to alter its structure. Thus, better methods require well-characterized ulvan-degrading enzymes. Therefore, we analysed a previously sequenced ulvan lyase (GenebankTM reference number JN104480) and characterized its domains. We suggest that the enzyme consists of a shorter than previously described catalytic domain, a newly identified substrate binding domain, and a C-terminal type 9 secretion system signal peptide. By separately expressing the two domains in E. coli, we confirmed that the binding domain is ulvan specific, having higher affinity for ulvan than most lectins for their ligands (affinity constant: 105 M-1). To our knowledge, this is the first description of an ulvan-binding domain. Overall, identifying this new binding domain is one step towards engineering ulvan enzymes that can be used to characterize ulvan, e.g. through enzymatic/mass spectrometric fingerprinting analyses, and help unlock its full potential.
Assuntos
Domínio Catalítico , Polissacarídeo-Liases/metabolismo , Clorófitas/química , Escherichia coli , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Ligação Proteica , Especificidade por SubstratoRESUMO
BACKGROUND: A screening method for elicitor and priming agents does not only allow detecting new bioactive substances, it can also be used to understand structure-function relationships of known agents by testing different derivatives of them. This can not only provide new lead compounds for the development of novel, more environment-benign, bio-based agro-chemicals, it may eventually also lead to a better understanding of defense mechanisms in plants. Reactive oxygen species (ROS) are sensitive indicators of these mechanisms but current assay formats are not suitable for multiplex screening, in particularly not in the case of monocot systems. RESULTS: Here we describe continuous monitoring of ROS in 96-well microtiter plates using the chemiluminescent probe L012, a luminol derivative producing chemiluminescence when oxidised by ROS like hydrogen peroxide, superoxide, or hydroxyl radical that can thus be used as an indicator for these ROS. We were able to measure ROS in both monocot (Oryza sativa) and dicot (Medicago truncatula) cell suspension cultures and record dose dependencies for the carbohydrate elicitors and priming agents ulvan and chitosan at low substrate concentrations (0.3-2.5 µg/ml). The method was optimized in terms of cell density, L012 concentration, and pre-incubation time. In contrast to the single peak observed using a cuvette luminometer, the improved method revealed a double burst in both cell systems during the 90-min measuring period, probably due to the detection of multiple ROS rather than only H2O2. CONCLUSION: We provide a medium throughput screening method for monocot and dicot suspension-cultured cells that enables direct comparison of monocot and dicot plant systems regarding their reaction to different signaling molecules.
RESUMO
To successfully survive in plants, endophytes need strategies to avoid being detected by the plant immune system, as the cell walls of endophytes contain easily detectible chitin. It is possible that endophytes "hide" this chitin from the plant immune system by modifying it, or oligomers derived from it, using chitin deacetylases (CDA). To explore this hypothesis, we identified and expressed a CDA from Pestalotiopsis sp. (PesCDA), an endophytic fungus, in E. coli and characterized this enzyme and its chitosan oligomer products. We found that when PesCDA modifies chitin oligomers, the products are partially deacetylated chitosan oligomers with a specific acetylation pattern: GlcNAc-GlcNAc-(GlcN)n-GlcNAc (n ≥ 1). Then, in a bioactivity assay where suspension-cultured rice cells were incubated with the PesCDA products (processed chitin hexamers), we found that, unlike the substrate hexamers, chitosan oligomer products no longer elicited the plant immune system. Thus, this endophytic enzyme can prevent the endophyte from being recognized by the plant immune system; this might represent a more general hypothesis for how certain fungi are able to live in or on their hosts.