Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 112(6): 1673-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21503957

RESUMO

Stimulation of bone formation by osteoinductive materials is of great clinical importance in spinal fusion surgery, repair of bone fractures, and in the treatment of osteoporosis. We previously reported that specific naturally occurring oxysterols including 20(S)-hydroxycholesterol (20S) induce the osteogenic differentiation of pluripotent mesenchymal cells, while inhibiting their adipogenic differentiation. Here we report the characterization of two structural analogues of 20S, Oxy34 and Oxy49, which induce the osteogenic and inhibit the adipogenic differentiation of bone marrow stromal cells (MSC) through activation of Hedgehog (Hh) signaling. Treatment of M2-10B4 MSC with Oxy34 or Oxy49 induced the expression of osteogenic differentiation markers Runx2, Osterix (Osx), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN), as well as ALP enzymatic activity and robust mineralization. Treatment with oxysterols together with PPARγ activator, troglitazone (Tro), inhibited mRNA expression for adipogenic genes PPARγ, LPL, and aP2, and inhibited the formation of adipocytes. Efficacy of Oxy34 and Oxy49 in stimulating bone formation in vivo was assessed using the posterolateral intertransverse process rat spinal fusion model. Rats receiving collagen implants with Oxy 34 or Oxy49 showed comparable osteogenic efficacy to BMP2/collagen implants as measured by radiography, MicroCT, and manual inspection. Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopedic indications requiring local bone formation.


Assuntos
Adipogenia/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Osteogênese/efeitos dos fármacos , Fusão Vertebral , Coluna Vertebral/citologia , Coluna Vertebral/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Masculino , Camundongos , Radiografia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coluna Vertebral/diagnóstico por imagem , Células Estromais/citologia
2.
J Cell Biochem ; 111(5): 1199-209, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20717924

RESUMO

Oxidative stress may play a major role in age-related osteoporosis in part by inhibiting osteoblast generation from osteoprogenitors cells. In the present study, we hypothesized that oxidative stress may inhibit the osteogenic differentiation of bone marrow stromal cells (MSC) in part by inhibiting the Hedgehog (Hh) signaling pathway, which is essential for bone development and maintenance and induces osteogenic differentiation of osteoprogenitor cells. To test this hypothesis, we examined the effects of oxidative stress on Sonic Hh (Shh)-induced osteogenic differentiation and signaling in M2-10B4 (M2) MSC, C3H10T1/2 embryonic fibroblasts, and mouse primary MSC. Treatment of cells with H(2)O(2) inhibited Shh-induced osteogenic differentiation determined by the inhibition of Shh-induced expression of osteogenic differentiation markers alkaline phosphatase (ALP), osterix (OSX), and bone sialoprotein (BSP). Similar effects were found when oxidative stress was induced by xanthine/xanthine oxidase (XXO) or minimally oxidized LDL (MM-LDL). H(2)O(2) , XXO, and MM-LDL treatment inhibited Shh-induced expression of the Hh target genes Gli1 and Patched1 as well as Gli-dependent transcriptional activity in M2 cells. H(2)O(2) treatment also inhibited Hh signaling induced by the direct activation of Smoothened by purmorphamine (PM), but not by Gli1 overexpression. This suggests that oxidative stress may inhibit Hh signaling upstream of Gli activation and Gli-induced gene expression. These findings demonstrate for the first time that oxidative stress inhibits Hh signaling associated with osteogenic differentiation. Inhibition of Hh signaling-mediated osteogenic differentiation of osteoprogenitor cells may in part explain the inhibitory effects of oxidative stress on osteoblast development, differentiation, and maintenance in aging.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Proteínas Hedgehog/metabolismo , Osteogênese , Estresse Oxidativo , Células Estromais/citologia , Animais , Biomarcadores , Células Cultivadas , Camundongos , Osteoblastos/citologia , Transdução de Sinais
3.
J Cell Biochem ; 105(2): 424-36, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18613030

RESUMO

Osteoporosis and its complications cause morbidity and mortality in the aging population, and result from increased bone resorption by osteoclasts in parallel with decreased bone formation by osteoblasts. A widely accepted strategy for improving bone health is targeting osteoprogenitor cells in order to stimulate their osteogenic differentiation and bone forming properties through the use of osteoinductive/anabolic factors. We previously reported that specific naturally occurring oxysterols have potent osteoinductive properties, mediated in part through activation of hedgehog signaling in osteoprogenitor cells. In the present report, we further demonstrate the molecular mechanism(s) by which oxysterols induce osteogenesis. In addition to activating the hedgehog signaling pathway, oxysterol-induced osteogenic differentiation is mediated through a Wnt signaling-related, Dkk-1-inhibitable mechanism. Bone marrow stromal cells (MSC) treated with oxysterols demonstrated increased expression of osteogenic differentiation markers, along with selective induced expression of Wnt target genes. These oxysterol effects, which occurred in the absence of beta-catenin accumulation or TCF/Lef activation, were inhibited by the hedgehog pathway inhibitor, cyclopamine, and/or by the Wnt pathway inhibitor, Dkk-1. Furthermore, the inhibitors of PI3-Kinase signaling, LY 294002 and wortmanin, inhibited oxysterol-induced osteogenic differentiation and induction of Wnt signaling target genes. Finally, activators of canonical Wnt signaling, Wnt3a and Wnt1, inhibited spontaneous, oxysterol-, and Shh-induced osteogenic differentiation of bone marrow stromal cells, suggesting the involvement of a non-canonical Wnt pathway in pro-osteogenic differentiation events. Osteogenic oxysterols are, therefore, important small molecule modulators of critical signaling pathways in pluripotent mesenchymal cells that regulate numerous developmental and post-developmental processes.


Assuntos
Colesterol/análogos & derivados , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Células Estromais/citologia , Animais , Células da Medula Óssea , Diferenciação Celular , Linhagem Celular , Colesterol/farmacologia , Proteínas Hedgehog/metabolismo , Camundongos , Osteogênese/fisiologia , Proteínas Wnt/genética
4.
J Bone Miner Res ; 22(11): 1711-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17638575

RESUMO

UNLABELLED: Specific oxysterols have been shown to be pro-osteogenic and anti-adipogenic. However, the molecular mechanism(s) by which oxysterols inhibit adipogenic differentiation is unknown. We show that the anti-adipogenic effects of osteogenic oxysterol, 20(S)-hydroxycholesterol, are mediated through a hedgehog-dependent mechanism(s) and are associated with inhibition of PPARgamma expression. INTRODUCTION: Multipotent bone marrow stromal cells (MSCs) are common progenitors of osteoblasts and adipocytes. A reciprocal relationship between osteogenic and adipogenic differentiation may explain the increased adipocyte and decreased osteoblast formation in aging and osteoporosis. We have previously reported that specific oxysterols stimulate osteogenic differentiation of MSCs while inhibiting their adipogenic differentiation. MATERIALS AND METHODS: The M2-10B4 (M2) murine pluripotent bone MSC line was used to assess the inhibitory effects of 20(S)-hydroxycholesterol (20S) and sonic hedgehog (Shh) on peroxisome proliferator-activated receptor gamma (PPARgamma) and adipogenic differentiation. All results were analyzed for statistical significance using ANOVA. RESULTS AND CONCLUSIONS: Treatment of M2 cells with the osteogenic oxysterol 20S completely inhibited adipocyte formation induced by troglitazone after 10 days. PPARgamma mRNA expression assessed by RT-qPCR was significantly induced by Tro after 48 (5-fold) and 96 h (130-fold), and this induction was completely inhibited by 20S. In contrast, 20S did not inhibit PPARgamma transcriptional activity in M2 cells overexpressing PPARgamma and retinoid X receptor (RXR). To elucidate the molecular mechanism(s) by which 20S inhibits PPARgamma expression and adipogenic differentiation, we focused on the hedgehog signaling pathway, which we previously showed to be the mediator of osteogenic responses to oxysterols. The hedgehog signaling inhibitor, cyclopamine, reversed the inhibitory effects of 20S and Shh on troglitazone-induced adipocyte formation in 10-day cultures of M2 cells by 70% and 100%, respectively, and the inhibitory effect of 20S and Shh on troglitazone-induced PPARgamma expression was fully reversed at 48 h by cyclopamine. Furthermore, 20S and Shh greatly inhibited PPARgamma2 promoter activity induced by CCAAT/enhancer-binding protein alpha overexpression. These studies show that, similar to the induction of osteogenesis, the inhibition of adipogenesis in murine MSCs by the osteogenic oxysterol, 20S, is mediated through a hedgehog-dependent mechanism(s).


Assuntos
Adipogenia/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Hidroxicolesteróis/farmacologia , PPAR gama/antagonistas & inibidores , Células Estromais/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linhagem Celular , Proteínas Hedgehog/antagonistas & inibidores , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Células Estromais/citologia , Alcaloides de Veratrum/farmacologia
5.
J Bone Miner Res ; 29(8): 1872-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24591126

RESUMO

Osteogenic factors are often used in orthopedics to promote bone growth, improve fracture healing, and induce spine fusion. Osteogenic oxysterols are naturally occurring molecules that were shown to induce osteogenic differentiation in vitro and promote spine fusion in vivo. The purpose of this study was to identify an osteogenic oxysterol more suitable for clinical development than those previously reported, and evaluate its ability to promote osteogenesis in vitro and spine fusion in rats in vivo. Among more than 100 oxysterol analogues synthesized, Oxy133 induced significant expression of osteogenic markers Runx2, osterix (OSX), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN) in C3H10T1/2 mouse embryonic fibroblasts and in M2-10B4 mouse marrow stromal cells. Oxy133-induced activation of an 8X-Gli luciferase reporter, its direct binding to Smoothened, and the inhibition of Oxy133-induced osteogenic effects by the Hedgehog (Hh) pathway inhibitor, cyclopamine, demonstrated the role of Hh pathway in mediating osteogenic responses to Oxy133. Oxy133 did not stimulate osteogenesis via BMP or Wnt signaling. Oxy133 induced the expression of OSX, BSP, and OCN, and stimulated robust mineralization in primary human mesenchymal stem cells. In vivo, bilateral spine fusion occurred through endochondral ossification and was observed in animals treated with Oxy133 at the fusion site on X-ray after 4 weeks and confirmed with manual assessment, micro-CT (µCT), and histology after 8 weeks, with equal efficiency to recombinant human bone morphogenetic protein-2 (rhBMP-2). Unlike rhBMP-2, Oxy133 did not induce adipogenesis in the fusion mass and resulted in denser bone evidenced by greater bone volume/tissue volume (BV/TV) ratio and smaller trabecular separation. Findings here suggest that Oxy133 has significant potential as an osteogenic molecule with greater ease of synthesis and improved time to fusion compared to previously studied oxysterols. Small molecule osteogenic oxysterols may serve as the next generation of bone anabolic agents for therapeutic development.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Proteínas Hedgehog/fisiologia , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esteróis/farmacologia , Animais , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Desenvolvimento Ósseo/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Camundongos , Estrutura Molecular , Osteogênese/genética , Ratos , Ratos Endogâmicos Lew , Esteróis/química
6.
J Bone Miner Res ; 25(4): 782-95, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19839776

RESUMO

We previously reported that specific oxysterols stimulate osteogenic differentiation of pluripotent bone marrow stromal cells (MSCs) through activation of hedgehog (Hh) signaling and may serve as potential future therapies for intervention in osteopenia and osteoporosis. In this study we report that the osteogenic oxysterol 20(S)-hydroxycholesterol (20S) induces the expression of genes associated with Notch signaling. Using M2-10B4 (M2) MSCs, we found that 20S significantly induced HES-1, HEY-1, and HEY-2 mRNA expression compared with untreated cells, with maximal induction after 48 hours, whereas the nonosteogenic oxysterols did not. Similar observations were made when M2 cells were treated with sonic hedgehog (Shh), and the specific Hh pathway inhibitor cyclopamine blocked 20S-induced Notch target gene expression. 20S did not induce Notch target genes in Smo(-/-) mouse embryonic fibroblasts, further confirming the role of Hh signaling in 20S-induced expression of Notch target genes. Despite the inability of liver X-receptor (LXR) synthetic ligand TO901317 to induce Notch target genes in M2 cells, LXR knockdown studies using siRNA showed inhibition of 20S-induced HEY-1 but not HES-1 expression, suggesting the partial role of LXR signaling in MSC responses to 20S. Moreover, 20S-induced Notch target gene expression was independent of canonical Notch signaling because neither 20S nor Shh induced CBF1 luciferase reporter activity or NICD protein accumulation in the nucleus, which are hallmarks of canonical Notch signaling activation. Finally, HES-1 and HEY-1 siRNA transfection significantly inhibited 20S-induced osteogenic genes, suggesting that the pro-osteogenic effects of 20S are regulated in part by HES-1 and HEY-1.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Osteogênese/efeitos dos fármacos , Receptores Notch/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/metabolismo , Receptores X do Fígado , Camundongos , Receptores Nucleares Órfãos/análise , Receptores Nucleares Órfãos/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fatores de Transcrição HES-1 , Alcaloides de Veratrum/farmacologia
7.
Mol Endocrinol ; 23(10): 1532-43, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19608643

RESUMO

Hedgehog (Hh) signaling is indispensable in embryonic development, and its dysregulated activity results in severe developmental disorders as shown by genetic models of naturally occurring mutations in animal and human pathologies. Hh signaling also functions in postembryonic development and adult tissue homeostasis, and its aberrant activity causes various human cancers. Better understanding of molecular regulators of Hh signaling is of fundamental importance in finding new strategies for pathway modulation. Here, we identify liver X receptors (LXRs), members of the nuclear hormone receptor family, as previously unrecognized negative regulators of Hh signaling. Activation of LXR by specific pharmacological ligands, TO901317 and GW3965, inhibited the responses of pluripotent bone marrow stromal cells and calvaria organ cultures to sonic Hh, resulting in the inhibition of expression of Hh-target genes, Gli1 and Patched1, and Gli-dependent transcriptional activity. Moreover, LXR ligands inhibited sonic Hh-induced differentiation of bone marrow stromal cells into osteoblasts. Elimination of LXRs by small interfering RNA inhibited ligand-induced inhibition of Hh target gene expression. Furthermore, LXR ligand did not inhibit Hh responsiveness in mouse embryonic fibroblasts that do not express LXRs, whereas introduction of LXR into these cells reestablished the inhibitory effects. Daily oral administration of TO901317 to mice after 3 d significantly inhibited baseline Hh target-gene expression in liver, lung, and spleen. Given the importance of modulating Hh signaling in various physiological and pathological settings, our findings suggest that pharmacological targeting of LXRs may be a novel strategy for Hh pathway modulation.


Assuntos
Proteínas Hedgehog/metabolismo , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Hidrocarbonetos Fluorados/farmacologia , Ligantes , Receptores X do Fígado , Camundongos , Morfolinas/farmacologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Técnicas de Cultura de Órgãos , Osteogênese/efeitos dos fármacos , Receptores Patched , Receptor Patched-1 , Purinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Crânio/efeitos dos fármacos , Crânio/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Sulfonamidas/farmacologia , Transativadores/genética , Transativadores/metabolismo , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA