Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064961

RESUMO

Herein, we report the synthesis of a new hybrid compound based on a 2'-deoxyuridine nucleoside conjugated with a NO photo-donor moiety (dU-t-NO) via CuAAC click chemistry. Hybrid dU-t-NO, as well as two previously reported 2'-deoxyadenosine based hybrids (dAdo-S-NO and dAdo-t-NO), were evaluated for their cytotoxic and cytostatic activities in selected cancer cell lines. dAdo-S-NO and dAdo-t-NO hybrids displayed higher activity with respect to dU-t-NO. All hybrids showed effective release of NO in the micromolar range. The photochemical behavior of the newly reported hybrid, dU-t-NO, was studied in the RKO colon carcinoma cell line, whereas the dAdo-t-NO hybrid was tested in both colon carcinoma RKO and hepatocarcinoma Hep 3B2.1-7 cell lines to evaluate the potential effect of NO released upon irradiation on cell viability. A customized irradiation apparatus for in vitro experiments was also designed.


Assuntos
Antineoplásicos , Doadores de Óxido Nítrico , Óxido Nítrico , Nucleosídeos , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/química , Nucleosídeos/química , Nucleosídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Química Click , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Desoxiuridina/química , Desoxiuridina/farmacologia , Desoxiuridina/análogos & derivados
2.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408912

RESUMO

Early post-transplant is the critical phase for the success of hematopoietic stem cell transplantation (HSCT). New viral infections and the reactivations associated with complete ablation of the recipient's T-cell immunity and inefficient reconstitution of the donor-derived system represent the main risks of HSCT. To date, the pharmacological treatments for post-HSCT viral infection-related complications have many limitations. Adoptive cell therapy (ACT) represents a new pharmacological strategy, allowing us to reconstitute the immune response to infectious agents in the post-HSC period. To demonstrate the potential advantage of this novel immunotherapy strategy, we report three cases of pediatric patients and the respective central nervous system complications after donor lymphocyte infusion.


Assuntos
Doenças Transmissíveis , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Viroses , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Criança , Doenças Transmissíveis/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunoterapia/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Linfócitos , Neoplasias/etiologia , Viroses/etiologia , Viroses/terapia
3.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056786

RESUMO

Chenodeoxycholic acid and ursodeoxycholic acid (CDCA and UDCA, respectively) have been conjugated with paclitaxel (PTX) anticancer drugs through a high-yield condensation reaction. Bile acid-PTX hybrids (BA-PTX) have been investigated for their pro-apoptotic activity towards a selection of cancer cell lines as well as healthy fibroblast cells. Chenodeoxycholic-PTX hybrid (CDC-PTX) displayed cytotoxicity and cytoselectivity similar to PTX, whereas ursodeoxycholic-PTX hybrid (UDC-PTX) displayed some anticancer activity only towards HCT116 colon carcinoma cells. Pacific Blue (PB) conjugated derivatives of CDC-PTX and UDC-PTX (CDC-PTX-PB and UDC-PTX-PB, respectively) were also prepared via a multistep synthesis for evaluating their ability to enter tumor cells. CDC-PTX-PB and UDC-PTX-PB flow cytometry clearly showed that both CDCA and UDCA conjugation to PTX improved its incoming into HCT116 cells, allowing the derivatives to enter the cells up to 99.9%, respect to 35% in the case of PTX. Mean fluorescence intensity analysis of cell populations treated with CDC-PTX-PB and UDC-PTX-PB also suggested that CDC-PTX-PB could have a greater ability to pass the plasmatic membrane than UDC-PTX-PB. Both hybrids showed significant lower toxicity with respect to PTX on the NIH-3T3 cell line.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/farmacologia , Paclitaxel/química , Paclitaxel/farmacologia , Animais , Antineoplásicos Fitogênicos/síntese química , Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Ácido Desoxicólico/análogos & derivados , Ácido Desoxicólico/síntese química , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacologia , Humanos , Leucemia/tratamento farmacológico , Camundongos , Paclitaxel/análogos & derivados , Paclitaxel/síntese química
4.
Nutr Metab Cardiovasc Dis ; 31(1): 344-353, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33500110

RESUMO

BACKGROUND AND AIMS: Cardiovascular disease is the main cause of death worldwide, but the collective efforts to prevent this pathological condition are directed exclusively to individuals at higher risk due to hypercholesterolemia, hypertension, obesity, diabetes. Recently, vitamin D deficiency was identified as a risk factor for cardiovascular disease in healthy people, as it predisposes to different vascular dysfunctions that can result in plaque development and fragility. In this scenario, the fundamental aim of the study was to reproduce a disease model inducing vitamin D deficiency and atheromatosis in ApoE-/- mice and then to evaluate the impact of this vitamin D status on the onset/progression of atheromatosis, focusing on plaque formation and instability. METHODS AND RESULTS: In our murine disease model, vitamin D deficiency was achieved by 3 weeks of vitamin D deficient diet along with intraperitoneal paricalcitol injections, while atheromatosis by western-type diet administration. Under these experimental conditions, vitamin D deficient mice developed more unstable atheromatous plaques with reduced or absent fibrotic cap. Since calcium and phosphorus metabolism and also cholesterol and triglycerides systemic concentration were not affected by vitamin D level, our results highlighted the role of vitamin D deficiency in the formation/instability of atheromatous plaque and, although further studies are needed, suggested a possible intervention with vitamin D to prevent or delay the atheromatous disease. CONCLUSIONS: The data obtained open the question about the potential role of the vitamins in the pharmacological treatments of cardiovascular disorders as coadjutant of the primary drugs used for these pathologies.


Assuntos
Doenças da Aorta/etiologia , Aterosclerose/etiologia , Deficiência de Vitamina D/complicações , Vitamina D/análogos & derivados , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/patologia , Biomarcadores/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Lipídeos/sangue , Camundongos Knockout para ApoE , Placa Aterosclerótica , Ruptura Espontânea , Vitamina D/sangue , Deficiência de Vitamina D/sangue
5.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946176

RESUMO

Mitoquinone (MitoQ) is a mitochondrial reactive oxygen species scavenger that is characterized by high bioavailability. Prior studies have demonstrated its neuroprotective potential. Indeed, the release of reactive oxygen species due to damage to mitochondrial components plays a pivotal role in the pathogenesis of several neurodegenerative diseases. The present study aimed to examine the impact of the inflammation platform activation on the neuronal cell line (DAOY) treated with specific inflammatory stimuli and whether MitoQ addition can modulate these deregulations. DAOY cells were pre-treated with MitoQ and then stimulated by a blockade of the cholesterol pathway, also called mevalonate pathway, using a statin, mimicking cholesterol deregulation, a common parameter present in some neurodegenerative and autoinflammatory diseases. To verify the role played by MitoQ, we examined the expression of genes involved in the inflammation mechanism and the mitochondrial activity at different time points. In this experimental design, MitoQ showed a protective effect against the blockade of the mevalonate pathway in a short period (12 h) but did not persist for a long time (24 and 48 h). The results obtained highlight the anti-inflammatory properties of MitoQ and open the question about its application as an effective adjuvant for the treatment of the autoinflammatory disease characterized by a cholesterol deregulation pathway that involves mitochondrial homeostasis.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Inflamação/tratamento farmacológico , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Linhagem Celular , Humanos , Inflamação/metabolismo , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/farmacologia
6.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681901

RESUMO

Innate and adaptive immune responses have a well-known link and represent the distinctive origins of several diseases, many of which may be the consequence of the loss of balance between these two responses. Indeed, autoinflammation and autoimmunity represent the two extremes of a continuous spectrum of pathologic conditions with numerous overlaps in different pathologies. A common characteristic of these dysregulations is represented by hyperinflammation, which is an exaggerated response of the immune system, especially involving white blood cells, macrophages, and inflammasome activation with the hyperproduction of cytokines in response to various triggering stimuli. Moreover, hyperinflammation is of great interest, as it is one of the main manifestations of COVID-19 infection, and the cytokine storm and its most important components are the targets of the pharmacological treatments used to combat COVID-19 damage. In this context, the purpose of our review is to provide a focus on the pathogenesis of autoinflammation and, in particular, of hyperinflammation in order to generate insights for the identification of new therapeutic targets and strategies.


Assuntos
Imunidade Adaptativa , Doenças Autoimunes/patologia , Síndrome da Liberação de Citocina/patologia , Imunidade Inata , Doenças Autoimunes/imunologia , COVID-19/complicações , COVID-19/patologia , COVID-19/virologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/metabolismo , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2/isolamento & purificação
7.
Clin Sci (Lond) ; 133(10): 1145-1166, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31097613

RESUMO

Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease.


Assuntos
Citocina TWEAK/metabolismo , Nefropatias/metabolismo , Osteoprotegerina/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Biomarcadores/metabolismo , Nefropatias Diabéticas/metabolismo , Humanos , Rim/metabolismo
8.
Mediators Inflamm ; 2018: 9629537, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147446

RESUMO

OBJECTIVE: "Oxinflammation" is a recently coined term that defines the deleterious crosstalk between inflammatory and redox systemic processes, which underlie several diseases. Oxinflammation could be latently responsible for the predisposition of certain healthy individuals to disease development. The oxinflammatory pathway has been recently suggested to play a crucial role in regulating the activity of TNF-related apoptosis-inducing ligand (TRAIL), a TNF superfamily member that can mediate multiple signals in physiological and pathological processes. Therefore, we investigated the associations between TRAIL and key players of vascular redox homeostasis. METHODS: We measured circulating TRAIL levels relative to praoxonas-1, lipoprotein phospholipase-A2, and ceruloplasmin levels in a cohort of healthy subjects (n = 209). RESULTS: Multivariate analysis revealed that ceruloplasmin levels were significantly inversely associated with TRAIL levels (r = -0.431, p < 0.001). The observed association retained statistical significance after adjustment for additional confounding factors. After stratification for high-sensitivity C-reactive protein levels, the inverse association between TRAIL and ceruloplasmin levels remained strong and significant (r = -0.508, p < 0.001, R2 = 0.260) only in the presence of inflammation, confirming the role of inflammation as emerged in in vitro experiments where recombinant TRAIL decreased ceruloplasmin expression levels in TNF-treated PBMC cultures. CONCLUSION: The results indicated that in an inflammatory milieu, TRAIL downregulates ceruloplasmin expression, highlighting a signaling axis involving TRAIL and ceruloplasmin that are linked via inflammation and providing important insights with potential clinical implications.


Assuntos
Ceruloplasmina/metabolismo , Inflamação/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Idoso , Feminino , Humanos , Inflamação/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
9.
Mediators Inflamm ; 2015: 942948, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26525345

RESUMO

Photorefractive keratectomy (PRK) represents a therapeutic option to remodel corneal stroma and to compensate refractive errors, which involves inflammatory and/or regenerative processes. In this context, the modulation of cytokines/chemokines in the conjunctival sac fluid and their role in the maintenance of the corneal microenvironment during the healing process upon refractive procedures has not been deeply investigated. In this study, serial samples of conjunctival sac fluid of patients (n = 25) undergoing PRK were harvested before and at different time points after surgery. The levels of 29 cytokines/chemokines/growth factors involved in inflammatory/immune processes were measured with a multiplex array system. The results have firstly highlighted the different pattern of cytokine expression between the microenvironment at the anterior surface of the eye and the systemic circulation. More importantly, the kinetic of modulation of cytokines/chemokines at the conjunctival level following PRK revealed that while the majority of cytokines/chemokines showed a significant decrease, MCP-1 emerged in light of its pronounced and significant increase soon after PRK and during the follow-up. This methodological approach has highlighted the role of MCP-1 in the healing process following PRK and has shown a potential for the identification of expression/modulation of soluble factors for biomarker profiling in ocular surface diseases.


Assuntos
Túnica Conjuntiva/patologia , Substância Própria/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Ceratectomia Fotorrefrativa/métodos , Adulto , Biomarcadores/metabolismo , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Estudos de Coortes , Túnica Conjuntiva/metabolismo , Citocinas/metabolismo , Feminino , Seguimentos , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Erros de Refração/terapia , Cicatrização
10.
Life (Basel) ; 14(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792620

RESUMO

Research progresses have led to the development of different kinds of nanoplatforms to deliver drugs through different biological membranes. Particularly, nanocarriers represent a precious means to treat skin pathologies, due to their capability to solubilize lipophilic and hydrophilic drugs, to control their release, and to promote their permeation through the stratum corneum barrier. A crucial point in the development of nano-delivery systems relies on their characterization, as well as in the assessment of their interaction with tissues, in order to predict their fate under in vivo administration. The size of nanoparticles, their shape, and the type of matrix can influence their biodistribution inside the skin strata and their cellular uptake. In this respect, an overview of some characterization methods employed to investigate nanoparticles intended for topical administration is presented here, namely dynamic light scattering, zeta potential, scanning and transmission electron microscopy, X-ray diffraction, atomic force microscopy, Fourier transform infrared and Raman spectroscopy. In addition, the main fluorescence methods employed to detect the in vitro nanoparticles interaction with skin cell lines, such as fluorescence-activated cell sorting or confocal imaging, are described, considering different examples of applications. Finally, recent studies on the techniques employed to determine the nanoparticle presence in the skin by ex vivo and in vivo models are reported.

11.
Int J Nanomedicine ; 19: 3513-3536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623081

RESUMO

Purpose: Proliferative vitreoretinal diseases (PVDs) represent a heterogeneous group of pathologies characterized by the presence of retinal proliferative membranes, in whose development retinal pigment epithelium (RPE) is deeply involved. As the only effective treatment for PVDs at present is surgery, we aimed to investigate the potential therapeutic activity of Nutlin-3a, a small non-genotoxic inhibitor of the MDM2/p53 interaction, on ARPE-19 cell line and on human RPE primary cells, as in vitro models of RPE and, more importantly, to formulate and evaluate Nutlin-3a loaded liposomes designed for ophthalmic administration. Methods: Liposomes were produced using an innovative approach by a microfluidic device under selection of different conditions. Liposome size distribution was evaluated by photon correlation spectroscopy and centrifugal field flow fractionation, while the liposome structure was studied by transmission electron microscopy and Fourier-transform infrared spectroscopy. The Nutlin-3a entrapment capacity was evaluated by ultrafiltration and HPLC. Nutlin-3a biological effectiveness as a solution or loaded in liposomes was evaluated by viability, proliferation, apoptosis and migration assays and by morphological analysis. Results: The microfluidic formulative study enabled the selection of liposomes composed of phosphatidylcholine (PC) 5.4 or 8.2 mg/mL and 10% ethanol, characterized by roundish vesicular structures with 150-250 nm mean diameters. Particularly, liposomes based on the lower PC concentration were characterized by higher stability. Nutlin-3a was effectively encapsulated in liposomes and was able to induce a significant reduction of viability and migration in RPE cell models. Conclusion: Our results lay the basis for a possible use of liposomes for the ocular delivery of Nutlin-3a.


Assuntos
Oftalmopatias , Imidazóis , Lipossomos , Piperazinas , Humanos , Lipossomos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Microfluídica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/farmacologia , Apoptose
12.
Invest New Drugs ; 31(3): 780-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23154882

RESUMO

The effect of the multi-kinase inhibitor Sorafenib was investigated in an in vitro model of human osteoclastogenesis, represented by peripheral blood mononuclear cells (PBMCs) induced to differentiate into osteoclast-like cells in presence of receptor activator of nuclear factor kappa B ligand (RANKL) plus macrophage-colony stimulating factor (M-CSF). Sorafenib significantly inhibited osteoclastic formation at clinically achievable concentrations (1-3 µM) and promoted autophagia with minimal induction of apoptosis. At the molecular levels, the M-CSF + RANKL combination increased the expression level of the Bcl-2 family member Mcl-1 protein, which is known to play a key role in the control of both cell survival and autophagia. The simultaneous treatment with Sorafenib significantly down-regulated endogenous Mcl-1 expression. Conversely, over-expression of Mcl-1 in primary human macrophages significantly counteracted the anti-osteoclastic activity of Sorafenib, strongly suggesting that Mcl-1 down-regulation played a major role in mediating the inhibitory activity of Sorafenib in cells of the osteoclastic lineage.


Assuntos
Antineoplásicos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Niacinamida/análogos & derivados , Osteoclastos/citologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Leucócitos Mononucleares/citologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Niacinamida/farmacologia , Ligante RANK/farmacologia , Sorafenibe
13.
Nutrients ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049568

RESUMO

Convolvulus pluricaulis (CP) is a common Indian herb, largely employed in Ayurvedic medicine and known for its neuroprotective and neuroinflammatory action. Its effectiveness against several pathologic/sub-pathologic conditions is widely accepted, but it is not yet completely chemically characterized. In recent years, several researchers have pointed out the involvement of CP and other Convolvulaceae in lipidic and glucidic metabolism, particularly in the control of hyperlipidaemia and diabetic conditions. In this scenario, the aim of the study was to chemically characterize the medium polarity part of the CP whole plant and its fractions and to shed light on their biological activity in adipocyte differentiation using the 3T3-L1 cell model. Our results demonstrated that the CP extract and fractions could upregulate the adipocyte differentiation through the modulation of the nuclear receptor PPARγ (Peroxisome Proliferator-Activated Receptor γ), broadly recognized as a key regulator of adipocyte differentiation, and the glucose transporter GLUT-4, which is fundamental for cellular glucose uptake and for metabolism control. CP also showed the ability to exert an anti-inflammatory effect, downregulating cytokines such as Rantes, MCP-1, KC, eotaxin, and GM-CSF, which are deeply involved in insulin resistance and glucose intolerance. Taken together, these data suggest that CP could exert a potential beneficial effect on glycemia and could be employed as an anti-diabetic adjuvant or, in any case, a means to better control glucose homeostasis.


Assuntos
Convolvulus , Camundongos , Animais , Convolvulus/química , Convolvulus/metabolismo , Células 3T3-L1 , Diferenciação Celular , Adipócitos , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , PPAR gama/metabolismo
14.
Invest New Drugs ; 30(6): 2403-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22238073

RESUMO

The basal SOCS1 mRNA levels were significantly lower in p53(mutated) BJAB and MAVER leukemic cell lines with respect to p53(wild-type) SKW6.4 and JVM-2 leukemic cell lines, p53(wild-type) primary B chronic lymphocytic leukemia (B-CLL) cells and primary normal peripheral blood mononuclear cells (PBMC). Moreover, the MDM2 small molecule inhibitor Nutlin-3 significantly increased the levels of SOCS1 mRNA in both primary p53(wild-type) B-CLL cells as well as in p53(wild-type) B leukemic cell lines, but not in p53(mutated) B leukemic cell lines nor in primary PBMC. Of note, a significant inverse correlation was observed between SOCS1 mRNA and miR-155 levels in Nutlin-3-treated primary B-CLL cells and PBMC, suggesting that the miRNA-155/SOCS1 axis represents a potentially important therapeutic target of Nutlin-3 in B-CLL.


Assuntos
Imidazóis/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , MicroRNAs/metabolismo , Piperazinas/farmacologia , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo , Humanos , Leucócitos Mononucleares/metabolismo , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Proteína Supressora de Tumor p53 , Regulação para Cima
15.
Haematologica ; 97(11): 1722-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22689683

RESUMO

BACKGROUND: Both the multi-kinase inhibitor sorafenib and the small molecule inhibitor of the MDM2/p53 interaction, nutlin-3, used alone, have shown promising anti-leukemic activity in acute myeloid leukemia cells. Thus, in this study we investigated the effect of the combination of sorafenib plus nutlin-3 in acute myeloid leukemia. DESIGN AND METHODS: Primary acute myeloid leukemia blasts (n=13) and FLT3(wild-type)/p53(wild-type) (OCI-AML3), FLT3(mutated)/p53(wild-type) (MOLM), FLT3(mutated)/p53(mutated) (MV4-11), FLT3(wild-type)/p53(deleted) (HL60) or FLT3(wild-type)/p53(mutated) (NB4) acute myeloid cell lines were exposed to sorafenib, used alone or in association with nutlin-3 at a 1:1 ratio, in a range of clinically achievable concentrations (1-10 µM). Induction of apoptosis and autophagy was evaluated by transmission electron microscopy and by specific flow cytometry analyses. The levels of Mcl-1, p53 and Bak proteins were analyzed by western blotting. Knock-down of Bax and Bak gene expression was performed in transfection experiments with specific short interfering RNA. RESULTS: The sorafenib+nutlin-3 drug combination exhibits synergistic cytotoxicity in primary acute myeloid leukemia blasts and in acute myeloid leukemia cell lines with maximal cytotoxicity in FLT3(mutated) MV4-11 and MOLM, followed by the FLT3(wild-type) OCI-AML3, HL60 and NB4 cell lines. The cytotoxic activity of sorafenib+nutlin-3 was characterized by an increase of both apoptosis and autophagy. Moreover, Bax and Bak showed prominent roles in mediating the decrease of cell viability in response to the drug combination in p53(wild-type) OCI-AML3 and p53(deleted) HL-60 cells, respectively, as demonstrated in transfection experiments performed with specific short interfering RNA. CONCLUSIONS: Our data demonstrate that acute myeloid leukemia cells show a variable but overall good susceptibility to the innovative therapeutic combination of sorafenib+nutlin-3, which differentially involves the pro-apoptotic Bcl-2 family members Bax and Bak in p53(wild-type) and p53(deleted) cells.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Piperazinas/farmacologia , Proteína Supressora de Tumor p53 , Tirosina Quinase 3 Semelhante a fms , Antineoplásicos/agonistas , Sinergismo Farmacológico , Feminino , Células HL-60 , Humanos , Imidazóis/agonistas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Niacinamida/agonistas , Niacinamida/farmacologia , Compostos de Fenilureia/agonistas , Piperazinas/agonistas , Sorafenibe
16.
Artigo em Inglês | MEDLINE | ID: mdl-35897423

RESUMO

The cholesterol biosynthesis represents a crucial metabolic pathway for cellular homeostasis. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids, and other molecules such as ubiquinone. Furthermore, some intermediates of this metabolic system perform biological activity in specific cellular compartments, such as isoprenoid molecules that can modulate different signal proteins through the prenylation process. The defects of prenylation represent one of the main causes that promote the activation of inflammation. In particular, this mechanism, in association with oxidative stress, induces a dysfunction of the mitochondrial activity. The purpose of this review is to describe the pleiotropic role of prenylation in neuroinflammation and to highlight the consequence of the defects of prenylation.


Assuntos
Ácido Mevalônico , Doenças Neuroinflamatórias , Colesterol/metabolismo , Humanos , Ácido Mevalônico/metabolismo , Estresse Oxidativo , Prenilação
17.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35337171

RESUMO

Janus kinases (JAK) are a family of tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) that transduce cytokine-mediated signals through the JAK-STAT metabolic pathway. These kinases act by regulating the transcription of specific genes capable of inducing biological responses in several immune cell subsets. Inhibition of Janus kinases interferes with the JAK-STAT signaling pathway. Besides being used in the treatment of cancer and inflammatory diseases, in recent years, they have also been used to treat inflammatory conditions, such as graft-versus-host disease (GVHD) and cytokine release syndrome as complications of allogeneic hematopoietic stem cell transplantation and cell therapy. Recently, the FDA approved the use of ruxolitinib, a JAK1/2 inhibitor, in the treatment of acute steroid-refractory GVHD (SR-aGVHD), highlighting the role of JAK inhibition in this immune deregulation. Ruxolitinib was initially used to treat myelofibrosis and true polycythemia in a high-dose treatment and caused hematological toxicity. Since a lower dosage often could not be effective, the use of ruxolitinib was suspended. Subsequently, ruxolitinib was evaluated in adult patients with SR-aGVHD and was found to achieve a rapid and effective response. In addition, its early low-dose use in pediatric patients affected by GVHD has proved effective, safe, and reasonably preventive. The review aims to describe the potential properties of ruxolitinib to identify new therapeutic strategies.

18.
Antioxidants (Basel) ; 11(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36552548

RESUMO

Hyperglycaemia and increased circulating saturated fatty acids are key metabolic features of type 2 diabetes mellitus (T2DM) that contribute to diabetic retinopathy pathogenesis. Contrarily, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been shown to improve or prevent T2DM. This study aimed at investigating the effect of TRAIL in an in vitro model of human retinal pigment epithelium: the ARPE-19 cell line, treated with palmitic acid (PA) in the presence of high glucose concentration. PA caused a drop in cellular metabolic activity and cell viability as well as an increase in apoptosis rates, which were paralleled by an upregulation of reactive oxygen species (ROS) generation as well as mitochondrial fragmentation. Despite ARPE-19 cells expressing TRAIL-R2 at the cell surface, TRAIL failed to counteract the cytotoxic effects of PA. However, when TRAIL was used alongside PA and then removed or used alone following PA challenge, it partially attenuated PA-induced lipotoxicity. This effect of TRAIL appeared to rely upon the modulation of inflammation and ROS production. Thus, TRAIL exerted a trophic effect on ARPE-19 cells, which became evident only when the lipotoxic insult was removed. Nevertheless, whether recombinant TRAIL might have a therapeutic potential for the treatment of diabetic retinopathy requires further investigation.

19.
Blood ; 113(18): 4300-8, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19190243

RESUMO

The small molecule inhibitor of the MDM2/p53 interaction Nutlin-3 significantly up-regulated the steady-state mRNA and protein levels of Notch1 in TP53(wild-type) (OCI, SKW6.4) but not in TP53(deleted) (HL-60) or TP53(mutated) (BJAB) leukemic cell lines. A direct demonstration that NOTCH1 was a transcriptional target of p53 in leukemic cells was obtained in experiments carried out with siRNA for p53. Moreover, inhibition of Notch1 expression using Notch1-specific siRNA significantly increased cytotoxicity in TP53(wild-type) leukemic cells. Of note, Nutlin-3 up-regulated Notch1 expression also in primary TP53(wild-type) B-chronic lymphocytic leukemia (B-CLL) cells and the combined use of Nutlin-3 plus pharmacological gamma-secretase inhibitors of the Notch signaling showed a synergistic cytotoxicity in both TP53(wild-type) leukemic cell lines and primary B-CLL cells. A potential drawback of gamma-secretase inhibitors was their ability to enhance osteoclastic maturation of normal circulating preosteoclasts induced by RANKL + M-CSF. Notwithstanding, Nutlin-3 completely suppressed osteoclastogenesis irrespective of the presence of gamma-secretase inhibitors. Taken together, these data indicate that the p53-dependent up-regulation of Notch1 in response to Nutlin-3 represents an antiapoptotic feedback mechanism able to restrain the potential therapeutic efficacy of Nutlin-3 in hematologic malignancies. Therefore, therapeutic combinations of Nutlin-3 + gamma-secretase inhibitors might potentiate the cytotoxicity of Nutlin-3 in p53(wild-type) leukemic cells.


Assuntos
Apoptose , Retroalimentação Fisiológica , Imidazóis/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Piperazinas/farmacologia , Receptor Notch1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Western Blotting , Carbamatos/farmacologia , Diferenciação Celular , Dipeptídeos/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Células HL-60 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Osteoclastos/citologia , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Receptor Notch1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estereoisomerismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
20.
Biomolecules ; 11(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680069

RESUMO

Mevalonate Kinase Deficiency (MKD) is a rare inborn disease belonging to the family of periodic fever syndromes. The MKD phenotype is characterized by systemic inflammation involving multiple organs, including the nervous system. Current anti-inflammatory approaches to MKD are only partially effective and do not act specifically on neural inflammation. According to the new emerging pharmacology trends, the repositioning of drugs from the indication for which they were originally intended to another one can make mechanistic-based medications easily available to treat rare diseases. According to this perspective, the squalene synthase inhibitor Lapaquistat (TAK-475), originally developed as a cholesterol-lowering drug, might find a new indication in MKD, by modulating the mevalonate cholesterol pathway, increasing the availability of anti-inflammatory isoprenoid intermediates. Using an in vitro model for MKD, we mimicked the blockade of the cholesterol pathway and evaluated the potential anti-inflammatory effect of Lapaquistat. The results obtained showed anti-inflammatory effects of Lapaquistat in association with a low blockade of the metabolic pathway, while this effect did not remain with a tighter blockade. On these bases, Lapaquistat could be configured as an effective treatment for MKD's mild forms, in which the residual enzymatic activity is only reduced and not almost completely absent as in the severe forms.


Assuntos
Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Deficiência de Mevalonato Quinase/enzimologia , Oxazepinas/uso terapêutico , Piperidinas/uso terapêutico , Alendronato/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Farnesil-Difosfato Farnesiltransferase/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Ácido Mevalônico/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Oxazepinas/farmacologia , Piperidinas/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA