Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Model ; 29(7): 205, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294345

RESUMO

CONTEXT: The monoclinic L-histidine crystal is critical for protein structure and function and is also found in the myelin of brain nerve cells. This study numerically examines its structural, electronic, and optical properties. Our findings indicate that the L-histidine crystal has an insulating band gap of approximately 4.38 eV. Additionally, electron and hole effective masses range between 3.92[Formula: see text]-15.33[Formula: see text] and 4.16[Formula: see text]-7.53[Formula: see text], respectively. Furthermore, our investigation suggests that the L-histidine crystal is an excellent UV collector due to its strong optical absorption activity for photon energies exceeding 3.5 eV. METHODS: To investigate the structural, electronic, and optical properties of L-histidine crystals, we used the Biovia Materials Studio software to conduct Density Functional Theory (DFT) simulations as implemented in the CASTEP code. Our DFT calculations were performed using the generalized gradient approximation (GGA) as parameterized by the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, with an additional dispersion energy correction (PBE [Formula: see text] TS) based on the model proposed by Tkatchenko and Scheffler to describe van der Waals interactions. Additionally, we employed the norm-conserving pseudopotential to treat core electrons.


Assuntos
Eletrônica , Histidina , Teoria da Densidade Funcional , Elétrons , Software
2.
J Mol Model ; 26(5): 100, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32297023

RESUMO

Nowadays, boron nitride has attracted a great deal of attention due to its physical (chemical) properties, facile synthesis, and experimental characterization, indicating great potential for industrial application. Based on this, we develop here a theoretical study on boron nitride nanoflakes built-up from hexagonal boron nitride nanosheets exhibiting hexagonal, rectangular, and triangular shapes. In order to investigate geometry effects such as those due to the presence of armchair and zigzag edges and distinct shapes, we analyzed their properties from both classical and quantum viewpoints. Using classical molecular dynamics calculations, we show that the nanosheets preserve their structural stability at high temperatures, while DFT calculations demonstrate HOMO-LUMO energy gap variation within the theoretical energy gaps of h-BN in bulk and 2D crystals. Besides that, we have also found that boron nitride nanoflakes structures have spatially symmetrical spin densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA