Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 40(3): 783-801, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31969012

RESUMO

OBJECTIVE: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PAs). It is now established that this phenotype is associated with enhanced PA smooth muscle cells (PASMCs) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMCs to survive despite the unfavorable environmental conditions. PIM1 (Moloney murine leukemia provirus integration site) is an oncoprotein upregulated in PAH and involved in many prosurvival pathways, including DNA repair. The objective of this study was to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by pharmacological inhibitors in human PAH-PASMCs and in rat PAH models. Approach and Results: We found in vitro that PIM1 inhibition by either SGI-1776, TP-3654, siRNA (silencer RNA) decreased the phosphorylation of its newly identified direct target KU70 (lupus Ku autoantigen protein p70) resulting in the inhibition of double-strand break repair (Comet Assay) by the nonhomologous end-joining as well as reduction of PAH-PASMCs proliferation (Ki67-positive cells) and resistance to apoptosis (Annexin V positive cells) of PAH-PASMCs. In vivo, SGI-1776 and TP-3654 given 3× a week, improved significantly pulmonary hemodynamics (right heart catheterization) and vascular remodeling (Elastica van Gieson) in monocrotaline and Fawn-Hooded rat models of PAH. CONCLUSIONS: We demonstrated that PIM1 phosphorylates KU70 and initiates DNA repair signaling in PAH-PASMCs and that PIM1 inhibitors represent a therapeutic option for patients with PAH.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , Hipertensão Pulmonar/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Apoptose , Proliferação de Células , Células Cultivadas , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Histonas/metabolismo , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Autoantígeno Ku/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Remodelação Vascular
2.
Am J Respir Crit Care Med ; 198(1): 90-103, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29394093

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a poor prognosis and limited therapeutic options. Although the mechanisms contributing to vascular remodeling in PAH are still unclear, several features, including hyperproliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs), have led to the emergence of the cancer-like concept. The molecular chaperone HSP90 (heat shock protein 90) is directly associated with malignant growth and proliferation under stress conditions. In addition to being highly expressed in the cytosol, HSP90 exists in a subcellular pool compartmentalized in the mitochondria (mtHSP90) of tumor cells, but not in normal cells, where it promotes cell survival. OBJECTIVES: We hypothesized that mtHSP90 in PAH-PASMCs represents a protective mechanism against stress, promoting their proliferation and resistance to apoptosis. METHODS: Expression and localization of HSP90 were analyzed by Western blot, immunofluorescence, and immunogold electron microscopy. In vitro, effects of mtHSP90 inhibition on mitochondrial DNA integrity, bioenergetics, cell proliferation and resistance to apoptosis were assessed. In vivo, the therapeutic potential of Gamitrinib, a mitochondria-targeted HSP90 inhibitor, was tested in fawn-hooded and monocrotaline rats. MEASUREMENTS AND MAIN RESULTS: We demonstrated that, in response to stress, HSP90 preferentially accumulates in PAH-PASMC mitochondria (dual immunostaining, immunoblot, and immunogold electron microscopy) to ensure cell survival by preserving mitochondrial DNA integrity and bioenergetic functions. Whereas cytosolic HSP90 inhibition displays a lack of absolute specificity for PAH-PASMCs, Gamitrinib decreased mitochondrial DNA content and repair capacity and bioenergetic functions, thus repressing PAH-PASMC proliferation (Ki67 labeling) and resistance to apoptosis (Annexin V assay) without affecting control cells. In vivo, Gamitrinib improves PAH in two experimental rat models (monocrotaline and fawn-hooded rat). CONCLUSIONS: Our data show for the first time that accumulation of mtHSP90 is a feature of PAH-PASMCs and a key regulator of mitochondrial homeostasis contributing to vascular remodeling in PAH.


Assuntos
Anti-Hipertensivos/uso terapêutico , Proteínas de Choque Térmico HSP90/análise , Proteínas de Choque Térmico HSP90/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Mitocôndrias/metabolismo , Remodelação Vascular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Ratos
3.
Arterioscler Thromb Vasc Biol ; 37(8): 1513-1523, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28473439

RESUMO

OBJECTIVE: Pulmonary arterial hypertension (PAH) is a vascular disease not restricted to the lungs. Many signaling pathways described in PAH are also of importance in other vascular remodeling diseases, such as coronary artery disease (CAD). Intriguingly, CAD is 4× more prevalent in PAH compared with the global population, suggesting a link between these 2 diseases. Both PAH and CAD are associated with sustained inflammation and smooth muscle cell proliferation/apoptosis imbalance and we demonstrated in PAH that this phenotype is, in part, because of the miR-223/DNA damage/Poly[ADP-ribose] polymerase 1/miR-204 axis activation and subsequent bromodomain protein 4 (BRD4) overexpression. Interestingly, BRD4 is also a trigger for calcification and remodeling processes, both of which are important in CAD. Thus, we hypothesize that BRD4 activation in PAH influences the development of CAD. APPROACH AND RESULTS: PAH was associated with significant remodeling of the coronary arteries in both human and experimental models of the disease. As observed in PAH distal pulmonary arteries, coronary arteries of patients with PAH also exhibited increased DNA damage, inflammation, and BRD4 overexpression. In vitro, using human coronary artery smooth muscle cells from PAH, CAD and non-PAH-non-CAD patients, we showed that both PAH and CAD smooth muscle cells exhibited increased proliferation and suppressed apoptosis in a BRD4-dependent manner. In vivo, improvement of PAH by BRD4 inhibitor was associated with a reduction in coronary remodeling and interleukin-6 expression. CONCLUSIONS: Overall, this study demonstrates that increased BRD4 expression in coronary arteries of patient with PAH contributes to vascular remodeling and comorbidity development.


Assuntos
Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Epigênese Genética , Hipertensão Pulmonar/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Remodelação Vascular , Animais , Apoptose , Estudos de Casos e Controles , Proteínas de Ciclo Celular , Proliferação de Células , Células Cultivadas , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Vasos Coronários/patologia , Dano ao DNA , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Interleucina-6/genética , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Nucleares/genética , Fenótipo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Remodelação Vascular/genética
4.
Circulation ; 133(14): 1371-85, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912814

RESUMO

BACKGROUND: Mutations in the KCNK3 gene have been identified in some patients suffering from heritable pulmonary arterial hypertension (PAH). KCNK3 encodes an outward rectifier K(+) channel, and each identified mutation leads to a loss of function. However, the pathophysiological role of potassium channel subfamily K member 3 (KCNK3) in PAH is unclear. We hypothesized that loss of function of KCNK3 is a hallmark of idiopathic and heritable PAH and contributes to dysfunction of pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, leading to pulmonary artery remodeling: consequently, restoring KCNK3 function could alleviate experimental pulmonary hypertension (PH). METHODS AND RESULTS: We demonstrated that KCNK3 expression and function were reduced in human PAH and in monocrotaline-induced PH in rats. Using a patch-clamp technique in freshly isolated (not cultured) pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, we found that KCNK3 current decreased progressively during the development of monocrotaline-induced PH and correlated with plasma-membrane depolarization. We demonstrated that KCNK3 modulated pulmonary arterial tone. Long-term inhibition of KCNK3 in rats induced distal neomuscularization and early hemodynamic signs of PH, which were related to exaggerated proliferation of pulmonary artery endothelial cells, pulmonary artery smooth muscle cell, adventitial fibroblasts, and pulmonary and systemic inflammation. Lastly, in vivo pharmacological activation of KCNK3 significantly reversed monocrotaline-induced PH in rats. CONCLUSIONS: In PAH and experimental PH, KCNK3 expression and activity are strongly reduced in pulmonary artery smooth muscle cells and endothelial cells. KCNK3 inhibition promoted increased proliferation, vasoconstriction, and inflammation. In vivo pharmacological activation of KCNK3 alleviated monocrotaline-induced PH, thus demonstrating that loss of KCNK3 is a key event in PAH pathogenesis and thus could be therapeutically targeted.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Túnica Adventícia/patologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Divisão Celular , Endotélio Vascular/patologia , Fibroblastos/patologia , Predisposição Genética para Doença , Hemodinâmica , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/genética , Hipertrofia Ventricular Direita/etiologia , Inflamação , Masculino , Potenciais da Membrana , Monocrotalina/toxicidade , Mutação , Miócitos de Músculo Liso/patologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/biossíntese , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Sulfonamidas/farmacologia , Resistência Vascular , ortoaminobenzoatos/farmacologia
5.
Circ Res ; 117(6): 525-35, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26224795

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. OBJECTIVE: To investigate the role of BRD4 in PAH pathogenesis. METHODS AND RESULTS: BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH-PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH-PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. CONCLUSIONS: BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH.


Assuntos
Epigênese Genética/fisiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Proteínas Nucleares/biossíntese , Artéria Pulmonar/metabolismo , Fatores de Transcrição/biossíntese , Adulto , Idoso , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Feminino , Humanos , Hipertensão Pulmonar/patologia , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Ratos
6.
Am J Respir Crit Care Med ; 194(10): 1273-1285, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27149112

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This is sustained in time by the down-regulation of microRNA (miR)-204. In systemic vascular diseases, reduced miR-204 expression promotes vascular biomineralization by augmenting the expression of the transcription factor Runt-related transcription factor 2 (RUNX2). Implication of RUNX2 in PAH-related vascular remodeling and presence of calcified lesions in PAH remain unexplored. OBJECTIVES: We hypothesized that RUNX2 is up-regulated in lungs of patients with PAH, contributing to vascular remodeling and calcium-related biomineralization. METHODS: We harvested human lung tissues in which we assessed calcification lesions and RUNX2 expression. We also isolated PASMCs from these tissues for in vitro analyses. Using a bidirectional approach, we investigated the role for RUNX2 in cell proliferation, apoptosis, and calcification capacity. Ectopic delivery of small interfering RNA against RUNX2 was used in an animal model of PAH to evaluate the therapeutic potential of RUNX2 inhibition in this disease. MEASUREMENTS AND MAIN RESULTS: Patients with PAH display features of calcified lesions within the distal pulmonary arteries (PAs). We show that RUNX2 is up-regulated in lungs, distal PAs, and primary cultured human PASMCs isolated from PAH and compared with patients without PAH. RUNX2 expression histologically correlates with vascular remodeling and calcification. Using in vitro gain- and loss-of-function approaches, we mechanistically demonstrate that miR-204 diminution promotes RUNX2 up-regulation and that sustained RUNX2 expression activates hypoxia-inducible factor-1α, leading to aberrant proliferation, resistance to apoptosis, and subsequent transdifferentiation of PAH-PASMCs into osteoblast-like cells. In the PAH Sugen/hypoxia rat model, molecular RUNX2 inhibition reduces PA remodeling and prevents calcification, thus improving pulmonary hemodynamic parameters and right ventricular function. CONCLUSIONS: RUNX2 plays a pivotal role in the pathogenesis of PAH, contributing to the development of proliferative and calcified PA lesions. Inhibition of RUNX2 may therefore represent an attractive therapeutic strategy for PAH.


Assuntos
Proliferação de Células/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Calcificação Vascular/genética , Calcificação Vascular/fisiopatologia , Adulto , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Int J Mol Sci ; 17(6)2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27338373

RESUMO

Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis.


Assuntos
Dano ao DNA , Hipertensão Pulmonar/metabolismo , Animais , Reparo do DNA , Genes Mitocondriais , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Estresse Oxidativo
8.
Am J Physiol Cell Physiol ; 309(6): C363-72, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26084306

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease affecting lung vasculature. The pulmonary arteries become occluded due to increased proliferation and suppressed apoptosis of the pulmonary artery smooth muscle cells (PASMCs) within the vascular wall. It was recently shown that DNA damage could trigger this phenotype by upregulating poly(ADP-ribose)polymerase 1 (PARP-1) expression, although the exact mechanism remains unclear. In silico analyses and studies in cancer demonstrated that microRNA miR-223 targets PARP-1. We thus hypothesized that miR-223 downregulation triggers PARP-1 overexpression, as well as the proliferation/apoptosis imbalance observed in PAH. We provide evidence that miR-223 is downregulated in human PAH lungs, distal PAs, and isolated PASMCs. Furthermore, using a gain and loss of function approach, we showed that increased hypoxia-inducible factor 1α, which is observed in PAH, triggers this decrease in miR-223 expression and subsequent overexpression of PARP-1 allowing PAH-PASMC proliferation and resistance to apoptosis. Finally, we demonstrated that restoring the expression of miR-223 in lungs of rats with monocrotaline-induced PAH reversed established PAH and provided beneficial effects on vascular remodeling, pulmonary resistance, right ventricle hypertrophy, and survival. We provide evidence that miR-223 downregulation in PAH plays an important role in numerous pathways implicated in the disease and restoring its expression is able to reverse PAH.


Assuntos
Hipertensão Pulmonar/metabolismo , MicroRNAs/metabolismo , Artéria Pulmonar/metabolismo , Animais , Apoptose/genética , Proliferação de Células/fisiologia , Células Cultivadas , Dano ao DNA/fisiologia , Regulação para Baixo/fisiologia , Feminino , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Monocrotalina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
9.
Circulation ; 129(7): 786-97, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24270264

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is associated with sustained inflammation known to promote DNA damage. Despite these unfavorable environmental conditions, PAH pulmonary arterial smooth muscle cells (PASMCs) exhibit, in contrast to healthy PASMCs, a pro-proliferative and anti-apoptotic phenotype, sustained in time by the activation of miR-204, nuclear factor of activated T cells, and hypoxia-inducible factor 1-α. We hypothesized that PAH-PASMCs have increased the activation of poly(ADP-ribose) polymerase-1 (PARP-1), a critical enzyme implicated in DNA repair, allowing proliferation despite the presence of DNA-damaging insults, eventually leading to PAH. METHODS AND RESULTS: Human PAH distal pulmonary arteries and cultured PAH-PASMCs exhibit increased DNA damage markers (53BP1 and γ-H2AX) and an overexpression of PARP-1 (immunoblot and activity assay), in comparison with healthy tissues/cells. Healthy PASMCs treated with a clinically relevant dose of tumor necrosis factor-α harbored a similar phenotype, suggesting that inflammation induces DNA damage and PARP-1 activation in PAH. We also showed that PARP-1 activation accounts for miR-204 downregulation (quantitative reverse transcription polymerase chain reaction) and the subsequent activation of the transcription factors nuclear factor of activated T cells and hypoxia-inducible factor 1-α in PAH-PASMCs, previously shown to be critical for PAH in several models. These effects resulted in PASMC proliferation (Ki67, proliferating cell nuclear antigen, and WST1 assays) and resistance to apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling and Annexin V assays). In vivo, the clinically available PARP inhibitor ABT-888 reversed PAH in 2 experimental rat models (Sugen/hypoxia and monocrotaline). CONCLUSIONS: These results show for the first time that the DNA damage/PARP-1 signaling pathway is important for PAH development and provide a new therapeutic target for this deadly disease with high translational potential.


Assuntos
Dano ao DNA/fisiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Transdução de Sinais/fisiologia , Adulto , Idoso , Animais , Apoptose/fisiologia , Benzimidazóis/farmacologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Monocrotalina/farmacologia , Fatores de Transcrição NFATC/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Eur Respir J ; 43(2): 531-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23845719

RESUMO

Pulmonary artery smooth muscle cells (PASMC), in pulmonary arterial hypertension (PAH), contribute to obliterative vascular remodelling and are characterised by enhanced proliferation, suppressed apoptosis and, a much less studied, increased migration potential. One of the major proteins that regulate cell migration is focal adhesion kinase (FAK), but its role in PAH is not fully understood. We hypothesised that targeting cell migration by FAK inhibition may be a new therapeutic strategy in PAH. In vivo, inhalation of FAK-siRNA (n=5) or oral delivery of PF-228 (FAK inhibitor PF-573 228; n=5) inhibited rat monocrotaline induced PAH, improving the haemodynamics, vascular remodelling (media thickness), and right ventricular hypertrophy. In vitro, FAK was activated in PAH human lungs (n=8) or PASMC when compared to those form healthy subjects (Western blot, n=5), in a Src-dependent manner, as it was reversed by the specific Src inhibitor PP2. The degree of FAK phosphorylation at Y576 correlated positively with pulmonary vascular resistance in PAH patients. FAK inhibition (siRNA, PF-228 and PP2) in PAH-PASMCs induced a fivefold increase in apoptosis (percentage of terminal deoxynucleotidyl transferase dUTP nick end labelling), a 2.5-fold decrease in proliferation (%Ki67), an 18% decrease in cell migration (colorimetric assay) and a 50% decrease in cell invasion (wound healing). Suppressing PASMC migration by FAK inhibition inhibits PAH progression and may open a new therapeutic window in PAH.


Assuntos
Movimento Celular , Regulação da Expressão Gênica , Hipertensão Pulmonar/fisiopatologia , Adolescente , Adulto , Animais , Apoptose , Hipertensão Pulmonar Primária Familiar , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Adulto Jovem
11.
Cell Mol Life Sci ; 69(17): 2805-31, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22446747

RESUMO

The pathobiology of pulmonary arterial hypertension (PAH) involves a remodeling process in distal pulmonary arteries, as well as vasoconstriction and in situ thrombosis, leading to an increase in pulmonary vascular resistance, right heart failure and death. Its etiology may be idiopathic, but PAH is also frequently associated with underlying conditions such as connective tissue diseases. During the past decade, more than welcome novel therapies have been developed and are in development, including those increasingly targeting the remodeling process. These therapeutic options modestly increase the patients' long-term survival, now approaching 60% at 5 years. However, non-invasive tools for confirming PAH diagnosis, and assessing disease severity and response to therapy, are tragically lacking and would help to select the best treatment. After exclusion of other causes of pulmonary hypertension, a final diagnosis still relies on right heart catheterization, an invasive technique which cannot be repeated as often as an optimal follow-up might require. Similarly, other techniques and biomarkers used for assessing disease severity and response to treatment generally lack specificity and have significant limitations. In this review, imaging as well as current and future circulating biomarkers for diagnosis, prognosis, and follow-up are discussed.


Assuntos
Biomarcadores/sangue , Diagnóstico por Imagem , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar Primária Familiar , Humanos
12.
Handb Exp Pharmacol ; 218: 437-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24092351

RESUMO

Pulmonary arterial hypertension (PAH) pathobiology involves a remodeling process in distal pulmonary arteries, as well as vasoconstriction and in situ thrombosis, leading to enhanced pulmonary vascular resistance and pressure, to right heart failure and death. The exact mechanisms accounting for PAH development remain unknown, but growing evidence demonstrate that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Not surprisingly, PAH is often associated with diverse inflammatory disorders. Furthermore, pathologic specimens from PAH patients reveal an accumulation of inflammatory cells in and around vascular lesions, including macrophages, T and B cells, dendritic cells, and mast cells. Circulating levels of autoantibodies, chemokines, and cytokines are also increased in PAH patients and some of these correlate with disease severity and patients' outcome. Moreover, preclinical experiments demonstrated the key role of inflammation in PAH pathobiology. Immunosuppressive agents have also demonstrated beneficial effects in animal PAH models. In humans, observational studies suggested that immunosuppressive drugs may be effective in treating some PAH subtypes associated with marked inflammation. The present chapter reviews experimental and clinical evidence suggesting that inflammation is involved in the pathogenesis of PAH, as well the therapeutic potential of immunosuppressive agents in PAH.


Assuntos
Anti-Inflamatórios/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Imunossupressores/uso terapêutico , Animais , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/etiologia , Infecções/complicações , Inflamação/complicações
13.
Circulation ; 123(11): 1205-15, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21382889

RESUMO

BACKGROUND: Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype required the activation of a prosurvival transcription factor like signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T cell (NFAT). Because these factors are implicated in several physiological processes, their inhibition in PAH patients could be associated with detrimental effects. Therefore, a better understanding of the mechanism accounting for their expression/activation in PAH pulmonary artery smooth muscle cells is of great therapeutic interest. METHODS AND RESULTS: Using multidisciplinary and translational approaches, we demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the expression of both NFATc2 and the oncoprotein kinase Pim1, which trigger NFATc2 activation. Because Pim1 expression correlates with the severity of PAH in humans and is confined to the PAH pulmonary artery smooth muscle cell, Pim1 was identified as an attractive therapeutic target for PAH. Indeed, specific Pim1 inhibition in vitro decreases pulmonary artery smooth muscle cell proliferation and promotes apoptosis, all of which are sustained by NFATc2 inhibition. In vivo, tissue-specific inhibition of Pim1 by nebulized siRNA reverses monocrotaline-induced PAH in rats, whereas Pim1 knockout mice are resistant to PAH development. CONCLUSION: We demonstrated for the first time that inhibition of the inappropriate activation of STAT3/Pim1 axis is a novel, specific, and attractive therapeutic strategy to reverse PAH.


Assuntos
Hipertensão Pulmonar/etiologia , Proteínas Proto-Oncogênicas c-pim-1/fisiologia , Fator de Transcrição STAT3/fisiologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Humanos , Mitocôndrias/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Fatores de Transcrição NFATC/fisiologia , Artéria Pulmonar/metabolismo , Ratos
14.
Arterioscler Thromb Vasc Biol ; 31(9): 2114-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21680901

RESUMO

OBJECTIVE: Vascular remodeling diseases (VRD) are mainly characterized by inflammation and a vascular smooth muscle cells (VSMCs) proproliferative and anti-apoptotic phenotype. Recently, the activation of the advanced glycation endproducts receptor (RAGE) has been shown to promote VSMC proliferation and resistance to apoptosis in VRD in a signal transducer and activator of transcription (STAT)3-dependant manner. Interestingly, we previously described in both cancer and VRD that the sustainability of this proproliferative and antiapoptotic phenotype requires activation of the transcription factor NFAT (nuclear factor of activated T-cells). In cancer, NFAT activation is dependent of the oncoprotein provirus integration site for Moloney murine leukemia virus (Pim1), which is regulated by STAT3 and activated in VRD. Therefore, we hypothesized that RAGE/STAT3 activation in VSMC activates Pim1, promoting NFAT and thus VSMC proliferation and resistance to apoptosis. Methods/Results- In vitro, freshly isolated human carotid VSMCs exposed to RAGE activator Nε-(carboxymethyl)lysine (CML) for 48 hours had (1) activated STAT3 (increased P-STAT3/STAT3 ratio and P-STAT3 nuclear translocation); (2) increased STAT3-dependent Pim1 expression resulting in NFATc1 activation; and (3) increased Pim1/NFAT-dependent VSMC proliferation (PCNA, Ki67) and resistance to mitochondrial-dependent apoptosis (TMRM, Annexin V, TUNEL). Similarly to RAGE inhibition (small interfering RNA [siRNA]), Pim1, STAT3 and NFATc1 inhibition (siRNA) reversed these abnormalities in human carotid VSMC. Moreover, carotid artery VSMCs isolated from Pim1 knockout mice were resistant to CML-induced VSMC proliferation and resistance to apoptosis. In vivo, RAGE inhibition decreases STAT3/Pim1/NFAT activation, reversing vascular remodeling in the rat carotid artery-injured model. CONCLUSIONS: RAGE activation accounts for many features of VRD including VSMC proliferation and resistance to apoptosis by the activation of STAT3/Pim1/NFAT axis. Molecules aimed to inhibit RAGE could be of a great therapeutic interest for the treatment of VRD.


Assuntos
Músculo Liso Vascular/patologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Receptores Imunológicos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Lisina/análogos & derivados , Lisina/sangue , Lisina/farmacologia , Camundongos , Fatores de Transcrição NFATC/fisiologia , Ratos , Receptor para Produtos Finais de Glicação Avançada , Fator de Transcrição STAT3/metabolismo
15.
Sci Rep ; 12(1): 13789, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963877

RESUMO

Asthma affects 340 million people worldwide and varies in time. Twenty years ago, in Canada, the Saguenay-Lac-Saint-Jean asthma family cohort was created to study the genetic and environmental components of asthma. This study is a follow-up of 125 participants of this cohort to explore the appearance, persistence, and progression of asthma over 10-20 years. Participants answered a clinical standardized questionnaire. Lung function was assessed (forced expiratory volume in 1 s, forced vital capacity, bronchial reversibility, and methacholine bronchoprovocation), skin allergy testing was performed, blood samples were obtained (immunoglobulin E, white blood cell counts) and phenotypes were compared between recruitment and follow-up. From the participants without asthma at recruitment, 12% developed a phenotype of adult-onset asthma with the presence of risk factors, such as atopy, high body mass index, and exposure to smoking. A decrease of PC20 values in this group was observed and a decrease in the FEV1/FVC ratio in all groups. Also, 7% of individuals with asthma at recruitment developed chronic obstructive pulmonary disease, presenting risk factors at recruitment, such as moderate-to-severe bronchial hyperresponsiveness, exposure to smoking, and asthma. This study allowed a better interpretation of the evolution of asthma. Fine phenotypic characterization is the first step for meaningful genetic and epigenetic studies.


Assuntos
Asma , Asma/genética , Canadá/epidemiologia , Seguimentos , Volume Expiratório Forçado , Humanos , Cloreto de Metacolina
16.
Am J Physiol Heart Circ Physiol ; 301(5): H1798-809, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21890685

RESUMO

Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by enhanced pulmonary artery smooth muscle cell (PASMC) proliferation and suppressed apoptosis. This phenotype is sustained by the activation of the Src/signal transducer and activator of transcription 3 (STAT3) axis, maintained by a positive feedback loop involving miR-204 and followed by an aberrant expression/activation of its downstream targets such as Pim1 and nuclear factor of activated T-cells (NFATc2). Dehydroepiandrosterone (DHEA) is a steroid hormone shown to reverse vascular remodeling in systemic vessels. Since STAT3 has been described as modulated by DHEA, we hypothesized that DHEA reverses human pulmonary hypertension by inhibiting Src/STAT3 constitutive activation. Using PASMCs isolated from patients with PAH (n = 3), we demonstrated that DHEA decreases both Src and STAT3 activation (Western blot and nuclear translocation assay), resulting in a significant reduction of Pim1, NFATc2 expression/activation (quantitative RT-PCR and Western blot), as well as Survivin and upregulation of bone morphogenetic protein receptor 2 (BMPR2) and miR-204. Src/STAT3 axis inhibition by DHEA is associated with 1) mitochondrial membrane potential (tetramethylrhodamine methyl-ester perchlorate; n = 150; P < 0.05) depolarization increasing apoptosis by 25% (terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling; n = 150; P < 0.05); and 2) decreased intracellular Ca(2+) concentration (fluo-3 AM; n = 150; P < 0.05) and proliferation by 30% (PCNA). Finally, in vivo similarly to STAT3 inhibition DHEA improves experimental PAH (monocrotaline rats) by decreasing mean PA pressure and right ventricle hypertrophy. These effects were associated with the inhibition of Src, STAT3, Pim1, NFATc2, and Survivin and the upregulation of BMPR2 and miR-204. We demonstrated that DHEA reverses pulmonary hypertension in part by inhibiting the Src/STAT3.


Assuntos
Anti-Hipertensivos/farmacologia , Desidroepiandrosterona/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vasodilatadores/farmacologia , Quinases da Família src/metabolismo , Adulto , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Marcação In Situ das Extremidades Cortadas , Proteínas Inibidoras de Apoptose/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Monocrotalina , Músculo Liso/enzimologia , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Miócitos de Músculo Liso/enzimologia , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Survivina
17.
Respir Res ; 12: 128, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21951574

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cell (PASMC) and suppressed apoptosis. This phenotype has been associated with the upregulation of the oncoprotein survivin promoting mitochondrial membrane potential hyperpolarization (decreasing apoptosis) and the upregulation of growth factor and cytokines like PDGF, IL-6 and vasoactive agent like endothelin-1 (ET-1) promoting PASMC proliferation. Krüppel-like factor 5 (KLF5), is a zinc-finger-type transcription factor implicated in the regulation of cell differentiation, proliferation, migration and apoptosis. Recent studies have demonstrated the implication of KLF5 in tissue remodeling in cardiovascular diseases, such as atherosclerosis, restenosis, and cardiac hypertrophy. Nonetheless, the implication of KLF5 in pulmonary arterial hypertension (PAH) remains unknown. We hypothesized that KLF5 up-regulation in PAH triggers PASMC proliferation and resistance to apoptosis. METHODS AND RESULTS: We showed that KFL5 is upregulated in both human lung biopsies and cultured human PASMC isolated from distal pulmonary arteries from PAH patients compared to controls. Using stimulation experiments, we demonstrated that PDGF, ET-1 and IL-6 trigger KLF-5 activation in control PASMC to a level similar to the one seen in PAH-PASMC. Inhibition of the STAT3 pathway abrogates KLF5 activation in PAH-PASMC. Once activated, KLF5 promotes cyclin B1 upregulation and promotes PASMC proliferation and triggers survivin expression hyperpolarizing mitochondria membrane potential decreasing PASMC ability to undergo apoptosis. CONCLUSION: We demonstrated for the first time that KLF5 is activated in human PAH and implicated in the pro-proliferative and anti-apoptotic phenotype that characterize PAH-PASMC. We believe that our findings will open new avenues of investigation on the role of KLF5 in PAH and might lead to the identification of new therapeutic targets.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proliferação de Células , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Fatores de Transcrição Kruppel-Like/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Adolescente , Adulto , Animais , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Imunofenotipagem , Fatores de Transcrição Kruppel-Like/biossíntese , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Regulação para Cima/fisiologia , Adulto Jovem
18.
Am J Physiol Heart Circ Physiol ; 299(4): H995-1001, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709868

RESUMO

Vascular remodeling diseases (VRDs) are characterized by enhanced inflammation and proliferative and apoptosis-resistant vascular smooth muscle cells (VSMCs). The sustainability of this phenotype has been attributed in part to the activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). There is evidence that circulating cytokines can act as HIF-1 activators in a variety of tissues, including VSMCs. Increased circulating tumor necrosis factor (TNF) levels have been associated with vascular diseases, but the mechanisms involved remain unknown. We hypothesized that increased circulating levels of TNF promotes VRDs by the activation of HIF-1, resulting in VSMC proliferation and resistance to apoptosis. Circulating TNF levels were significantly increased in patients with vascular diseases (n = 19) compared with healthy donors (n = 15). Using human carotid artery smooth muscle cells (CASMCs), we demonstrated that TNF (100 ng/ml) activates HIF-1 (HIF-1α expression), leading to increased CASMC proliferation (Ki-67 and PCNA staining) and resistance to mitochondrial-dependent apoptosis [tetramethylrhodamine methyl ester perchlorate (TMRM), terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL), annexin-V staining]. In vivo, TNF inhibition using polyethylene glycol coupled with TNF membrane receptor 1 (PEGsTNFR1), a soluble TNF receptor inhibiting circulating TNF, prevented carotid artery postinjury media remodeling and neointima development in rats. This effect was associated with lowered HIF-1 activation and decreased CASMC proliferation. In conclusion, we demonstrate for the first time that the inhibition of the TNF/Akt/HIF-1 axis prevents vascular remodeling. TNF inhibitors may therefore represent new and interesting therapeutic tools against VRDs.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Polietilenoglicóis/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Artérias Carótidas/citologia , Artérias Carótidas/metabolismo , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/farmacologia
19.
Mol Genet Genomic Med ; 8(1): e992, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578829

RESUMO

BACKGROUND: This study reports the genetic features of four Caucasian males from the Saguenay-Lac-St-Jean region affected by partial agenesis of the corpus callosum (ACC) with hypotonia, epilepsy, developmental delay, microcephaly, hypoplasia, and autistic behavior. METHODS: We performed whole exome sequencing (WES) to identify new genes involved in this pathological phenotype. The regions of interest were subsequently sequenced for family members. RESULTS: Single-nucleotide variations (SNVs) and insertions or deletions were detected in genes potentially implicated in brain defects observed in these patients. One patient did not have mutations in genes related to ACC, but carried a de novo pathogenic mutation in Mucolipin-1 (MCOLN1) and was diagnosed with mucolipidosis type IV. Among the other probands, missense SNVs were observed in DCLK2 (Doublecortin Like Kinase 2), HERC2 (HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 2), and KCNH3 (Potassium channel, voltage-gated, subfamily H, member 3). One patient also carried a non-frameshift insertion in CACNA1A (Cav2.1(P/Q-type) calcium channels). CONCLUSION: Although no common genetic defect was observed in this study, we provide evidence for new avenues of investigation for ACC, such as molecular pathways involving HERC2, CACNA1A, KCNH3, and more importantly DCLK2. We also allowed to diagnose an individual with mucolipidosis type IV.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Exoma , Microcefalia/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Agenesia do Corpo Caloso/patologia , Canais de Cálcio/genética , Deficiências do Desenvolvimento/patologia , Quinases Semelhantes a Duplacortina , Epilepsia/patologia , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Masculino , Microcefalia/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Síndrome , Canais de Potencial de Receptor Transitório/genética , Ubiquitina-Proteína Ligases/genética
20.
Can J Cardiol ; 31(4): 407-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25630876

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by remodelling of pulmonary arteries caused by a proliferation/apoptosis imbalance within the vascular wall. This pathological phenotype seems to be triggered by different environmental stress and injury events such as increased inflammation, DNA damage, and epigenetic deregulation. It appears that one of the first hit to occur is endothelial cells (ECs) injury and apoptosis, which leads to paracrine signalling to other ECs, pulmonary artery smooth muscle cells (PASMCs), and fibroblasts. These signals promote a phenotypic change of surviving ECs by disturbing different signalling pathways leading to sustained vasoconstriction, proproliferative and antiapoptotic phenotype, deregulated angiogenesis, and formation of plexiform lesions. EC signalling also recruits proinflammatory cells, leading to pulmonary infiltration of lymphocytes, macrophages, and dendritic cells, sustaining the inflammatory environment and autoimmune response. Finally, EC signalling promotes proliferative and antiapoptotic PAH-PASMC phenotypes, which acquire migratory capacities, resulting in increased vascular wall thickness and muscularization of small pulmonary arterioles. Adaptation and remodelling of pulmonary circulation also involves epigenetic components, such as microRNA deregulation, DNA methylation, and histone modification. This review will focus on the different cellular and epigenetic aspects including EC stress response, molecular mechanisms contributing to PAH-PASMC and PAEC proliferation and resistance to apoptosis, as well as epigenetic control involved in adaptation and remodelling of the pulmonary circulation in PAH.


Assuntos
Adaptação Fisiológica/fisiologia , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar/fisiologia , Pressão Propulsora Pulmonar , Remodelação Vascular/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA