Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Genet ; 14(11): e1007735, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30399141

RESUMO

Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased ß-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.


Assuntos
Estudos de Associação Genética , Genótipo , Fenótipo , Animais , DNA Mitocondrial , Dieta , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Aptidão Genética , Haplótipos , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaboloma , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação , Conformação Proteica , Reprodutibilidade dos Testes , Transcriptoma
2.
Mutagenesis ; 32(3): 323-334, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28521046

RESUMO

Mitochondria are found in all animals and have the unique feature of containing multiple copies of their own small, circular DNA genome (mtDNA). The rate and pattern of mutation accumulation in the mtDNA are influenced by molecular, cellular and population level processes. We distinguish between inherited and somatic mtDNA mutations and review evidence for the often-made assumption that mutations accumulate at a higher rate in mtDNA than in nuclear DNA (nDNA). We conclude that the whole genome mutation accumulation rate is higher for mtDNA than for nDNA but include the caveat that rates overlap considerably between the individual mtDNA- and nDNA-encoded genes. Next, we discuss the postulated causal mechanisms for the high rate of mtDNA mutation accumulation in both inheritance and in somatic cells. Perhaps unexpectedly, mtDNA is resilient to many mutagens of nDNA but is prone to errors of replication. We then consider the influence of maternal inheritance, recombination and selection on the observed accumulation pattern of inherited mtDNA mutations. Finally, we discuss environmental influences of temperature and diet on the observed frequency of inherited and somatic mtDNA mutations. We conclude that it is necessary to understand the cellular processes to fully interpret the pattern of mutations and how they influence our interpretations of evolution and disease.


Assuntos
Genoma Mitocondrial , Mutação , Animais , Humanos
3.
J Exp Biol ; 219(Pt 10): 1488-94, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944488

RESUMO

Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance.


Assuntos
Borboletas/fisiologia , Metabolismo Energético , Voo Animal/fisiologia , Fritillaria/parasitologia , Oxigênio/metabolismo , Animais , Metabolismo Basal/efeitos dos fármacos , Metabolismo Basal/fisiologia , Borboletas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Voo Animal/efeitos dos fármacos , Glucose/análise , Hipóxia/metabolismo , Masculino , Análise de Regressão , Descanso , Inanição/metabolismo , Trealase/antagonistas & inibidores , Trealase/metabolismo , Trealose/análise
4.
J Hum Genet ; 58(3): 127-34, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23303385

RESUMO

Cytochrome c oxidase (COX) of the electron transport system is thought to be the rate-limiting step in cellular respiration and is found mutated in numerous human pathologies. Here, we employ quaternary three-dimensional (3-D) modeling to construct a model for human COX. The model was used to predict the functional consequences of amino-acid mutations based on phylogenetic conservation of amino acids together with volume and/or steric perturbations, participation in subunit-subunit interfaces and non-covalent energy loss or incompatibilities. These metrics were combined and interpreted for potential functional impact. A notable strength of the 3-D model is that it can interpret and predict the structural consequences of amino-acid variation in all 13 protein subunits. Importantly, the influence of compensatory changes can also be modeled. We examine mutations listed in the human mutation database Mitomap, and in 100 older men, and compare the results from the 3-D model against the automated MutPred web application tool. In combination, these comparisons suggest that the 3-D model predicts more functionally significant mutations than does MutPred. We conclude that the model has useful functional prediction capability but may need modification as functional data on specific mutations becomes known.


Assuntos
DNA Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Mutação , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Animais , Bovinos , Análise Mutacional de DNA , DNA Mitocondrial/genética , Bases de Dados Genéticas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Masculino , Mitocôndrias/genética , Modelos Moleculares , Mapeamento de Interação de Proteínas , Estrutura Quaternária de Proteína
5.
Cell Rep ; 42(7): 112739, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405919

RESUMO

The ability to feed on a sugar-containing diet depends on a gene regulatory network controlled by the intracellular sugar sensor Mondo/ChREBP-Mlx, which remains insufficiently characterized. Here, we present a genome-wide temporal clustering of sugar-responsive gene expression in Drosophila larvae. We identify gene expression programs responding to sugar feeding, including downregulation of ribosome biogenesis genes, known targets of Myc. Clockwork orange (CWO), a component of the circadian clock, is found to be a mediator of this repressive response and to be necessary for survival on a high-sugar diet. CWO expression is directly activated by Mondo-Mlx, and it counteracts Myc through repression of its gene expression and through binding to overlapping genomic regions. CWO mouse ortholog BHLHE41 has a conserved role in repressing ribosome biogenesis genes in primary hepatocytes. Collectively, our data uncover a cross-talk between conserved gene regulatory circuits balancing the activities of anabolic pathways to maintain homeostasis during sugar feeding.


Assuntos
Proteínas de Drosophila , Proteínas Repressoras , Ribossomos , Açúcares , Animais , Camundongos , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ribossomos/metabolismo , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Repressoras/metabolismo
6.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142350

RESUMO

Misfolding of the prion protein (PrP) is responsible for devastating neurological disorders in humans and other mammals. An unresolved problem in the field is unraveling the mechanisms governing PrP conformational dynamics, misfolding, and the cellular mechanism leading to neurodegeneration. The variable susceptibility of mammals to prion diseases is a natural resource that can be exploited to understand the conformational dynamics of PrP. Here we present a new fly model expressing human PrP with new, robust phenotypes in brain neurons and the eye. By using comparable attP2 insertions, we demonstrated the heightened toxicity of human PrP compared to rodent PrP along with a specific interaction with the amyloid-ß peptide. By using this new model, we started to uncover the intrinsic (sequence/structure) and extrinsic (interactions) factors regulating PrP toxicity. We described PERK (officially known as EIF2AK3 in humans) and activating transcription factor 4 (ATF4) as key in the cellular mechanism mediating the toxicity of human PrP and uncover a key new protective activity for 4E-BP (officially known as Thor in Drosophila and EIF4EBP2 in humans), an ATF4 transcriptional target. Lastly, mutations in human PrP (N159D, D167S, N174S) showed partial protective activity, revealing its high propensity to misfold into toxic conformations.


Assuntos
Proteínas Priônicas , Príons , Peptídeos beta-Amiloides , Animais , Drosophila , Humanos , Mamíferos , Neurônios , Proteínas Priônicas/genética
7.
Fly (Austin) ; 16(1): 299-311, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35765944

RESUMO

Studies in a broad range of animal species have revealed phenotypes that are caused by ancestral life experiences, including stress and diet. Ancestral dietary macronutrient composition and quantity (over- and under-nutrition) have been shown to alter descendent growth, metabolism and behaviour. Molecules have been identified in gametes that are changed by ancestral diet and are required for transgenerational effects. However, there is less understanding of the developmental pathways altered by inherited molecules during the period between fertilization and adulthood. To investigate this non-genetic inheritance, we exposed great grand-parental and grand-parental generations to defined protein to carbohydrate (P:C) dietary ratios. Descendent developmental timing was consistently faster in the period between the embryonic and pupal stages when ancestors had a higher P:C ratio diet. Transcriptional analysis revealed extensive and long-lasting changes to the MAPK signalling pathway, which controls growth rate through the regulation of ribosomal RNA transcription. Pharmacological inhibition of both MAPK and rRNA pathways recapitulated the ancestral diet-induced developmental changes. This work provides insight into non-genetic inheritance between fertilization and adulthood.


Assuntos
Drosophila , Células Germinativas , Animais , Drosophila/genética , Larva , Sistema de Sinalização das MAP Quinases , Pupa
8.
Sci Adv ; 8(16): eabm5944, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452284

RESUMO

Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.


Assuntos
Canidae , Lobos , Animais , Austrália , Cruzamento , Canidae/genética , Cães , Filogenia , Lobos/genética
9.
medRxiv ; 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33532795

RESUMO

The COVID-19 pandemic has exacerbated the disparities in healthcare delivery in the US. Many communities had, and continue to have, limited access to COVID-19 testing, making it difficult to track the spread and impact of COVID-19 in early days of the outbreak. To address this issue we monitored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA at the population-level using municipal wastewater influent from 19 cities across the state of Minnesota during the COVID-19 outbreak in Summer 2020. Viral RNA was detected in wastewater continually for 20-weeks for cities ranging in populations from 500 to >1, 000, 000. Using a novel indexing method, we were able to compare the relative levels of SARS-CoV-2 RNA for each city during this sampling period. Our data showed that viral RNA trends appeared to precede clinically confirmed cases across the state by several days. Lag analysis of statewide trends confirmed that wastewater SARS-CoV-2 RNA levels preceded new clinical cases by 15-17 days. At the regional level, new clinical cases lagged behind wastewater viral RNA anywhere from 4-20 days. Our data illustrates the advantages of monitoring at the population-level to detect outbreaks. Additionally, by tracking infections with this unbiased approach, resources can be directed to the most impacted communities before the need outpaces the capacity of local healthcare systems.

10.
Sci Rep ; 11(1): 21368, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725394

RESUMO

There is a need for wastewater based epidemiological (WBE) methods that integrate multiple, variously sized surveillance sites across geographic areas. We developed a novel indexing method, Melvin's Index, that provides a normalized and standardized metric of wastewater pathogen load for qPCR assays that is resilient to surveillance site variation. To demonstrate the utility of Melvin's Index, we used qRT-PCR to measure SARS-CoV-2 genomic RNA levels in influent wastewater from 19 municipal wastewater treatment facilities (WWTF's) of varying sizes and served populations across the state of Minnesota during the Summer of 2020. SARS-CoV-2 RNA was detected at each WWTF during the 20-week sampling period at a mean concentration of 8.5 × 104 genome copies/L (range 3.2 × 102-1.2 × 109 genome copies/L). Lag analysis of trends in Melvin's Index values and clinical COVID-19 cases showed that increases in indexed wastewater SARS-CoV-2 levels precede new clinical cases by 15-17 days at the statewide level and by up to 25 days at the regional/county level. Melvin's Index is a reliable WBE method and can be applied to both WWTFs that serve a wide range of population sizes and to large regions that are served by multiple WWTFs.


Assuntos
COVID-19/epidemiologia , SARS-CoV-2/genética , População Suburbana , População Urbana , Instalações de Eliminação de Resíduos , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias/virologia , Purificação da Água , COVID-19/virologia , Genoma Viral , Humanos , Minnesota/epidemiologia , Prevalência , Prognóstico , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Risco
11.
Pathogens ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802018

RESUMO

Bartonella bacilliformis (B. bacilliformis), Bartonella henselae (B. henselae), and Bartonella quintana (B. quintana) are bacteria known to cause verruga peruana or bacillary angiomatosis, vascular endothelial growth factor (VEGF)-dependent cutaneous lesions in humans. Given the bacteria's association with the dermal niche and clinical suspicion of occult infection by a dermatologist, we determined if patients with melanoma had evidence of Bartonella spp. infection. Within a one-month period, eight patients previously diagnosed with melanoma volunteered to be tested for evidence of Bartonella spp. exposure/infection. Subsequently, confocal immunohistochemistry and PCR for Bartonella spp. were used to study melanoma tissues from two patients. Blood from seven of the eight patients was either seroreactive, PCR positive, or positive by both modalities for Bartonella spp. exposure. Subsequently, Bartonella organisms that co-localized with VEGFC immunoreactivity were visualized using multi-immunostaining confocal microscopy of thick skin sections from two patients. Using a co-culture model, B. henselae was observed to enter melanoma cell cytoplasm and resulted in increased vascular endothelial growth factor C (VEGFC) and interleukin 8 (IL-8) production. Findings from this small number of patients support the need for future investigations to determine the extent to which Bartonella spp. are a component of the melanoma pathobiome.

12.
iScience ; 24(11): 103308, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34820603

RESUMO

The kidneys balance many byproducts of the metabolism of dietary components. Previous studies examining dietary effects on kidney health are generally of short duration and manipulate a single macronutrient. Here, kidney function and structure were examined in C57BL/6J mice randomized to consume one of a spectrum of macronutrient combinations (protein [5%-60%], carbohydrate [20%-75%], and fat [20%-75%]) from weaning to late-middle age (15 months). Individual and interactive impacts of macronutrients on kidney health were modeled. Dietary protein had the greatest influence on kidney function, where chronic low protein intake decreased glomerular filtration rates and kidney mass, whereas it increased kidney immune infiltration and structural injury. Kidney outcomes did not align with cardiometabolic risk factors including glucose intolerance, overweight/obesity, dyslipidemia, and hypertension in mice with chronic low protein consumption. This study highlights that protein intake over a lifespan is an important determinant of kidney function independent of cardiometabolic changes.

13.
Am Nat ; 176(4): E98-E108, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20698788

RESUMO

This study aimed to determine whether a naturally occurring (DeltaTrp85, DeltaVal86) deletion from a protein subunit of cytochrome c oxidase (complex IV) influenced cytochrome c oxidase activity, mRNA expression levels of electron transport chain genes, and aspects of adult female fitness in the fly Drosophila simulans. We modeled the tertiary structure of D. simulans cox7A containing the deletion by homology to the bovine cox7A structure and predicted that it would decrease the function of complex IV. This prediction led to the hypothesis that flies with the deletion would have lower cytochrome c oxidase activity and higher levels of mRNA expression from cox7A. This result was observed, but unexpectedly, elevated levels of mRNA expression were also observed in genes encoding subunits of complexes I, III, and IV. Together these data suggest that the deletion causes a high bioenergetic cost to the organism. To investigate the predicted cost at a physiological level, we assayed aspects of adult female fitness. Starvation sensitivity but not feeding rate was significantly influenced by the two-amino acid deletion. Further, we observed that carbohydrate and protein levels but not lipid levels were higher in the mutant flies. Together, these data show that quaternary structure modeling and biochemistry can be used to link the genotype with the organismal phenotype.


Assuntos
Drosophila/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Subunidades Proteicas/genética , Sequência de Aminoácidos , Animais , Composição Corporal/genética , Drosophila/enzimologia , Drosophila/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Comportamento Alimentar , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , Deleção de Sequência , Inanição
14.
Oncol Lett ; 20(5): 165, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32952654

RESUMO

Y-box binding protein 1 (YB-1) is a regulatory protein associated with oncogenesis and poor prognosis in patients with cancer. In the cell, YB-1 functions as a DNA and RNA binding protein that promotes or suppresses expression of target genes. The cancer-promoting activity of YB-1 is mediated through its activation of oncogenes and repression of tumor suppressor genes. Lipogenic enzyme stearoyl-CoA desaturase (SCD1) drives the production of endogenous monounsaturated fatty acids (MUFAs) in cells and protects against toxic buildup of saturated fatty acids. Clear cell renal cell carcinoma (ccRCC) is often characterized by aberrantly high SCD1 expression and cytosolic accumulation of unsaturated fatty acids. In the present study, a proteomics screen of cells treated with inhibitors of SCD1 supported a potential relationship between YB-1 and SCD1. It was revealed that the presence of MUFAs led to increased protein synthesis and increased expression of high molecular weight forms of YB-1 in ccRCC cells, but not in non-tumorigenic cells. Ectopic expression of YB-1 led to decreased expression levels of SCD1 protein and mRNA in ccRCC cell lines. Conversely, targeted knockdown of YB-1 increased SCD1 mRNA abundance. Analysis of ccRCC patient data from The Cancer Proteome Atlas database showed YB-1 expression was negatively associated with survival, whereas SCD1 was associated with improved survival. These data suggested an antagonistic relationship between YB-1 and SCD1 that may influence survival of patients with ccRCC.

15.
Aging Cell ; 6(5): 699-708, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17725690

RESUMO

The goal of this study is to test the role of mitochondria and of mitochondrial metabolism in determining the processes that influence aging of female and male Drosophila. We observe that Drosophila simulans females tended to have shorter lifespan, higher levels of hydrogen peroxide production and significantly lower levels of catalase but not superoxide dismutase compared to males. In contrast, mammalian females tend to be longer lived, have lower rates of reactive oxygen species production and higher antioxidant activity. In both Drosophila and mammals, mitochondria extracted from females consume a higher quantity of oxygen when provided with adenosine diphosphate and have a greater mtDNA copy number than males. Combined, these data illustrate important similarities between the parameters that influence aging and mitochondrial metabolism in Drosophila and in mammals but also show surprising differences.


Assuntos
Drosophila/fisiologia , Mitocôndrias/metabolismo , Envelhecimento , Animais , Catalase/metabolismo , DNA Mitocondrial/metabolismo , Metabolismo Energético , Peróxido de Hidrogênio/metabolismo , Longevidade/genética , Mitocôndrias/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Caracteres Sexuais , Superóxido Dismutase/metabolismo
16.
J Insect Physiol ; 54(7): 1132-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18606168

RESUMO

Scientists have used numerous techniques to measure organismal metabolic rate, including assays of oxygen (O2) consumption and carbon dioxide (CO2) production. Relatively few studies have directly compared estimates of metabolic rate on the same groups of animals as determined by different assay methods. This study directly compared measures of the metabolic rate of three lines of Drosophila simulans as determined either from direct measures of CO2 production using infrared gas analysis (IRGA), or from estimates of O2 consumption based on manometeric techniques. Determinations of metabolic rate of the same cohorts of flies using these two methods produced results that often differed widely. Typically metabolic rate as determined by the manometric method was significantly greater than that determined by CO2 output. These differences are difficult to explain by simple biotic or abiotic factor(s). Because of the idiosyncratic nature of these differences it is not possible to use a simple factor to convert from metabolic rate measurements done using manometric techniques to those expected from direct measures of CO2 output or O2 consumption. Although manometric devices are simple to construct and use, measurements of metabolic rate made with this method can vary significantly from measurements made by directly assaying CO2 production or O2 consumption.


Assuntos
Drosophila/metabolismo , Manometria/métodos , Oxigênio/metabolismo , Animais , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Drosophila/química , Oxigênio/análise , Consumo de Oxigênio
17.
Elife ; 72018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30480548

RESUMO

How dietary selection affects genome evolution to define the optimal range of nutrient intake is a poorly understood question with medical relevance. We have addressed this question by analyzing Drosophila simulans and sechellia, recently diverged species with differential diet choice. D. sechellia larvae, specialized to a nutrient scarce diet, did not survive on sugar-rich conditions, while the generalist species D. simulans was sugar tolerant. Sugar tolerance in D. simulans was a tradeoff for performance on low-energy diet and was associated with global reprogramming of metabolic gene expression. Hybridization and phenotype-based introgression revealed the genomic regions of D. simulans that were sufficient for sugar tolerance. These regions included genes that are involved in mitochondrial ribosome biogenesis and intracellular signaling, such as PPP1R15/Gadd34 and SERCA, which contributed to sugar tolerance. In conclusion, genomic variation affecting genes involved in global metabolic control defines the optimal range for dietary macronutrient composition.


Assuntos
Açúcares da Dieta/metabolismo , Drosophila simulans/genética , Drosophila/genética , Tolerância a Medicamentos/genética , Genoma de Inseto , Transdução de Sinais , Animais , Reprogramação Celular/genética , Dieta/métodos , Açúcares da Dieta/administração & dosagem , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila simulans/efeitos dos fármacos , Drosophila simulans/metabolismo , Regulação da Expressão Gênica , Variação Genética , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , Biogênese de Organelas , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Especificidade da Espécie
18.
Evolution ; 61(7): 1735-47, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17598752

RESUMO

Recent studies have used a variety of theoretical arguments to show that mitochondrial (mt) DNA rarely evolves as a strictly neutral marker and that selection operates on the mtDNA of many species. However, the vast majority of researchers are not convinced by these arguments because data linking mtDNA variation with phenotypic differences are limited. We investigated sequence variation in the three mtDNA and nine nuclear genes (including all isoforms) that encode the 12 subunits of cytochrome c oxidase of the electron transport chain in Drosophila. We then studied cytochrome c oxidase activity as a key aspect of mitochondrial bioenergetics and four life-history traits. In Drosophila simulans, sequence data from the three mtDNA encoded cytochrome c oxidase genes show that there are 76 synonymous and two nonsynonymous fixed differences among flies harboring siII compared with siIII mtDNA. In contrast, 13 nuclear encoded genes show no evidence of genetic subdivision associated with the mtDNA. Flies with siIII mtDNA had higher cytochrome c oxidase activity and were more starvation resistant. Flies harboring siII mtDNA had greater egg size and fecundity, and recovered faster from cold coma. These data are consistent with a causative role for mtDNA variation in these phenotypic differences, but we cannot completely rule out the involvement of nuclear genes. The results of this study have significant implications for the use of mtDNA as an assumed neutral marker and show that evolutionary shifts can involve changes in mtDNA despite the small number of genes encoded in the organelle genome.


Assuntos
DNA Mitocondrial/genética , Drosophila/metabolismo , Estágios do Ciclo de Vida , Mitocôndrias/metabolismo , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Fertilidade , Óvulo
19.
Aging Cell ; 5(3): 225-33, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16842495

RESUMO

Lifespans of organisms vary greatly even among individuals of the same species. Under the framework of the free oxygen radical theory of aging, it is predicted that variation in individual lifespan within a species will correlate with variation in the accumulation of oxidative damage to cell components from reactive oxygen species. In this study we test the hypothesis that variation in survival of three wild-caught Drosophila simulans fly lines (HW09, NC48 and MD106) correlates with three key aspects of mitochondrial bioenergetics. The rank order of median survival was HW09 > MD106 > NC48. Young HW09 flies (11-18 days) had (i) highest ADP:O (quantity of oxygen consumed by mitochondria when provided with a quantity of ADP) when metabolizing both electron transport chain complex I and complex III substrates; (ii) lowest rate of mitochondrial hydrogen peroxide production from complex III; and (iii) highest cytochrome c oxidase activity from complex IV. Rate of hydrogen peroxide production increased and cytochrome c oxidase activity decreased in all lines in the age range 11-25 days. This is the first study to correlate natural variation in organism survival with natural variation in mitochondrial bioenergetics.


Assuntos
Drosophila/classificação , Drosophila/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Difosfato de Adenosina/metabolismo , Animais , Drosophila/citologia , Drosophila/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Variação Genética , Peróxido de Hidrogênio/metabolismo , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Oxigênio/metabolismo , Especificidade da Espécie , Taxa de Sobrevida
20.
Ann N Y Acad Sci ; 1114: 93-106, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17934050

RESUMO

A common feature across all animals, including humans, is that mitochondrial bioenergetics is linked to oxidative stress, but the nature of these relationships with survival is yet to be properly defined. In this study we included 12 Drosophila simulans isofemale lines: four of each distinct mtDNA haplogroup (siI, -II, and -III). First, we investigated sequence variation in six mtDNA and 13 nuclear encoded genes (nine nuclear-encoded subunits, and the four known isoforms, of complex IV of the electron transport chain). As expected we observed high divergence among the three distinct mitotypes and greatest mtDNA variability in siII-harboring flies. In the nuclear encoded genes, no fixed amino acid differences were observed and levels of polymorphism did not differ significantly among flies harboring distinct mtDNA types. Second, 15,456 flies were included in mortality studies. We observed that mtDNA type influenced survival (siII approximately siIII > siI), flies harboring siII mtDNA had the greatest variation in mortality rates, and in all cases males were longer lived than females. We also assayed maximal rates of hydrogen peroxide (H(2)O(2)) production from complex III of the electron transport chain in mitochondria isolated from 11-day-old flies. Contrary to our prediction, rates of H(2)O(2) production tended to increase with mean survival. This result suggests that higher rates of H(2)O(2) production in younger flies may lead to an upregulation of antioxidants, age-dependent increase in the rate of H(2)O(2) production differ, and/or flies vary in their mitochondrial uncoupling. Alternatively, the whole organism may not regularly, if ever, experience maximal H(2)O(2) production rates.


Assuntos
Envelhecimento/genética , DNA Mitocondrial/genética , Drosophila/genética , Modelos Animais , Animais , Drosophila/química , Genótipo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA